File size: 6,174 Bytes
28c6826
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
""" Checkpoint Saver

Track top-n training checkpoints and maintain recovery checkpoints on specified intervals.

Hacked together by / Copyright 2020 Ross Wightman
"""

import glob
import operator
import os
import logging

import torch

from .model import unwrap_model, get_state_dict


_logger = logging.getLogger(__name__)


class CheckpointSaver:
    def __init__(
            self,
            model,
            optimizer,
            args=None,
            model_ema=None,
            amp_scaler=None,
            checkpoint_prefix='checkpoint',
            recovery_prefix='recovery',
            checkpoint_dir='',
            recovery_dir='',
            decreasing=False,
            max_history=10,
            unwrap_fn=unwrap_model):

        # objects to save state_dicts of
        self.model = model
        self.optimizer = optimizer
        self.args = args
        self.model_ema = model_ema
        self.amp_scaler = amp_scaler

        # state
        self.checkpoint_files = []  # (filename, metric) tuples in order of decreasing betterness
        self.best_epoch = None
        self.best_metric = None
        self.curr_recovery_file = ''
        self.last_recovery_file = ''

        # config
        self.checkpoint_dir = checkpoint_dir
        self.recovery_dir = recovery_dir
        self.save_prefix = checkpoint_prefix
        self.recovery_prefix = recovery_prefix
        self.extension = '.pth.tar'
        self.decreasing = decreasing  # a lower metric is better if True
        self.cmp = operator.lt if decreasing else operator.gt  # True if lhs better than rhs
        self.max_history = max_history
        self.unwrap_fn = unwrap_fn
        assert self.max_history >= 1

    def save_checkpoint(self, epoch, metric=None):
        assert epoch >= 0
        tmp_save_path = os.path.join(self.checkpoint_dir, 'tmp' + self.extension)
        last_save_path = os.path.join(self.checkpoint_dir, 'last' + self.extension)
        self._save(tmp_save_path, epoch, metric)
        if os.path.exists(last_save_path):
            os.unlink(last_save_path) # required for Windows support.
        os.rename(tmp_save_path, last_save_path)
        worst_file = self.checkpoint_files[-1] if self.checkpoint_files else None
        if (len(self.checkpoint_files) < self.max_history
                or metric is None or self.cmp(metric, worst_file[1])):
            if len(self.checkpoint_files) >= self.max_history:
                self._cleanup_checkpoints(1)
            filename = '-'.join([self.save_prefix, str(epoch)]) + self.extension
            save_path = os.path.join(self.checkpoint_dir, filename)
            os.link(last_save_path, save_path)
            self.checkpoint_files.append((save_path, metric))
            self.checkpoint_files = sorted(
                self.checkpoint_files, key=lambda x: x[1],
                reverse=not self.decreasing)  # sort in descending order if a lower metric is not better

            checkpoints_str = "Current checkpoints:\n"
            for c in self.checkpoint_files:
                checkpoints_str += ' {}\n'.format(c)
            _logger.info(checkpoints_str)

            if metric is not None and (self.best_metric is None or self.cmp(metric, self.best_metric)):
                self.best_epoch = epoch
                self.best_metric = metric
                best_save_path = os.path.join(self.checkpoint_dir, 'model_best' + self.extension)
                if os.path.exists(best_save_path):
                    os.unlink(best_save_path)
                os.link(last_save_path, best_save_path)

        return (None, None) if self.best_metric is None else (self.best_metric, self.best_epoch)

    def _save(self, save_path, epoch, metric=None):
        save_state = {
            'epoch': epoch,
            'arch': type(self.model).__name__.lower(),
            'state_dict': get_state_dict(self.model, self.unwrap_fn),
            'optimizer': self.optimizer.state_dict(),
            'version': 2,  # version < 2 increments epoch before save
        }
        if self.args is not None:
            save_state['arch'] = self.args.model
            save_state['args'] = self.args
        if self.amp_scaler is not None:
            save_state[self.amp_scaler.state_dict_key] = self.amp_scaler.state_dict()
        if self.model_ema is not None:
            save_state['state_dict_ema'] = get_state_dict(self.model_ema, self.unwrap_fn)
        if metric is not None:
            save_state['metric'] = metric
        torch.save(save_state, save_path)

    def _cleanup_checkpoints(self, trim=0):
        trim = min(len(self.checkpoint_files), trim)
        delete_index = self.max_history - trim
        if delete_index <= 0 or len(self.checkpoint_files) <= delete_index:
            return
        to_delete = self.checkpoint_files[delete_index:]
        for d in to_delete:
            try:
                _logger.debug("Cleaning checkpoint: {}".format(d))
                os.remove(d[0])
            except Exception as e:
                _logger.error("Exception '{}' while deleting checkpoint".format(e))
        self.checkpoint_files = self.checkpoint_files[:delete_index]

    def save_recovery(self, epoch, batch_idx=0):
        assert epoch >= 0
        filename = '-'.join([self.recovery_prefix, str(epoch), str(batch_idx)]) + self.extension
        save_path = os.path.join(self.recovery_dir, filename)
        self._save(save_path, epoch)
        if os.path.exists(self.last_recovery_file):
            try:
                _logger.debug("Cleaning recovery: {}".format(self.last_recovery_file))
                os.remove(self.last_recovery_file)
            except Exception as e:
                _logger.error("Exception '{}' while removing {}".format(e, self.last_recovery_file))
        self.last_recovery_file = self.curr_recovery_file
        self.curr_recovery_file = save_path

    def find_recovery(self):
        recovery_path = os.path.join(self.recovery_dir, self.recovery_prefix)
        files = glob.glob(recovery_path + '*' + self.extension)
        files = sorted(files)
        if len(files):
            return files[0]
        else:
            return ''