Spaces:
Sleeping
Sleeping
File size: 1,804 Bytes
28c6826 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 |
import ml_collections
def d(**kwargs):
"""Helper of creating a config dict."""
return ml_collections.ConfigDict(initial_dictionary=kwargs)
def get_config():
config = ml_collections.ConfigDict()
config.seed = 1234
config.z_shape = (8, 16, 16)
config.autoencoder = d(
config_file='vq-f16-jax.yaml',
)
config.data_path="data/one_style.json"
config.resume_root="assets/ckpts/cc3m-285000.ckpt"
config.adapter_path=None
config.sample_interval=True
config.train = d(
n_steps=1000,
batch_size=8,
log_interval=20,
eval_interval=100,
save_interval=100,
fid_interval=20000,
num_workers=8,
resampled=False,
)
config.optimizer = d(
name='adamw',
lr=0.0003,
weight_decay=0.03,
betas=(0.99, 0.99),
)
config.lr_scheduler = d(
name='customized',
warmup_steps=-1, # 5000
)
config.nnet = d(
name='uvit_t2i_vq',
img_size=16,
codebook_size=1024,
in_chans=4,
embed_dim=1152,
depth=28,
num_heads=16,
mlp_ratio=4,
qkv_bias=False,
clip_dim=1280,
num_clip_token=77,
use_checkpoint=False,
skip=True,
d_prj=32,# Stage I: 32; Stage II: TODO
is_shared=False, # Stage I: False; Stage II: False
)
config.muse = d(
ignore_ind=-1,
smoothing=0.1,
gen_temp=4.5
)
config.sample = d(
sample_steps=36,
n_samples=50,
mini_batch_size=8,
cfg=True,
linear_inc_scale=True,
scale=10.,
path='',
lambdaA=2.0, # Stage I: 2.0; Stage II: TODO
lambdaB=5.0, # Stage I: 5.0; Stage II: TODO
)
return config
|