Spaces:
Sleeping
Sleeping
File size: 9,245 Bytes
28c6826 27f50b2 28c6826 27f50b2 28c6826 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 |
import os
import gradio as gr
import open_clip
import torch
import taming.models.vqgan
import ml_collections
import einops
import random
import pathlib
import subprocess
import shlex
import wget
# Model
from libs.muse import MUSE
import utils
import numpy as np
from PIL import Image
def get_config():
config = ml_collections.ConfigDict()
config.seed = 1234
config.z_shape = (8, 16, 16)
config.autoencoder = d(
config_file='vq-f16-jax.yaml',
)
config.resume_root="assets/ckpts/cc3m-285000.ckpt"
config.adapter_path=None
config.optimizer = d(
name='adamw',
lr=0.0002,
weight_decay=0.03,
betas=(0.99, 0.99),
)
config.lr_scheduler = d(
name='customized',
warmup_steps=5000
)
config.nnet = d(
name='uvit_t2i_vq',
img_size=16,
codebook_size=1024,
in_chans=4,
embed_dim=1152,
depth=28,
num_heads=16,
mlp_ratio=4,
qkv_bias=False,
clip_dim=1280,
num_clip_token=77,
use_checkpoint=True,
skip=True,
d_prj=32,
is_shared=False
)
config.muse = d(
ignore_ind=-1,
smoothing=0.1,
gen_temp=4.5
)
config.sample = d(
sample_steps=36,
n_samples=50,
mini_batch_size=8,
cfg=True,
linear_inc_scale=True,
scale=10.,
path='',
lambdaA=2.0, # Stage I: 2.0; Stage II: TODO
lambdaB=5.0, # Stage I: 5.0; Stage II: TODO
)
return config
print("cuda available:",torch.cuda.is_available())
print("cuda device count:",torch.cuda.device_count())
print("cuda device name:",torch.cuda.get_device_name(0))
# print(os.system("nvidia-smi"))
print(os.system("nvcc --version"))
empty_context = np.load("assets/contexts/empty_context.npy")
config = get_config()
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
print(device)
# Load open_clip and vq model
print("GPU memory:",torch.cuda.memory_allocated(0)/1024/1024/1024,"GB")
prompt_model,_,_ = open_clip.create_model_and_transforms('ViT-bigG-14', 'laion2b_s39b_b160k',device=device)
print("GPU memory:",torch.cuda.memory_allocated(0)/1024/1024/1024,"GB")
prompt_model = prompt_model.to(device)
prompt_model.eval()
tokenizer = open_clip.get_tokenizer('ViT-bigG-14')
print("downloading cc3m-285000.ckpt")
os.makedirs("assets/ckpts/cc3m-285000.ckpt",exist_ok=True)
wget.download("https://huggingface.co/nzl-thu/MUSE/resolve/main/assets/ckpts/cc3m-285000.ckpt/lr_scheduler.pth","assets/ckpts/cc3m-285000.ckpt/lr_scheduler.pth")
wget.download("https://huggingface.co/nzl-thu/MUSE/resolve/main/assets/ckpts/cc3m-285000.ckpt/optimizer.pth","assets/ckpts/cc3m-285000.ckpt/optimizer.pth")
wget.download("https://huggingface.co/nzl-thu/MUSE/resolve/main/assets/ckpts/cc3m-285000.ckpt/nnet.pth","assets/ckpts/cc3m-285000.ckpt/nnet.pth")
wget.download("https://huggingface.co/nzl-thu/MUSE/resolve/main/assets/ckpts/cc3m-285000.ckpt/nnet_ema.pth","assets/ckpts/cc3m-285000.ckpt/nnet_ema.pth")
wget.download("https://huggingface.co/nzl-thu/MUSE/resolve/main/assets/ckpts/cc3m-285000.ckpt/step.pth","assets/ckpts/cc3m-285000.ckpt/step.pth")
wget.download("https://huggingface.co/zideliu/vqgan/resolve/main/vqgan_jax_strongaug.ckpt","assets/vqgan_jax_strongaug.ckpt")
os.system("ls assets/ckpts/cc3m-285000.ckpt")
def set_seed(seed: int):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
def d(**kwargs):
"""Helper of creating a config dict."""
return ml_collections.ConfigDict(initial_dictionary=kwargs)
def cfg_nnet(x, context, scale=None,lambdaA=None,lambdaB=None):
_cond = nnet_ema(x, context=context)
_cond_w_adapter = nnet_ema(x,context=context,use_adapter=True)
_empty_context = torch.tensor(empty_context, device=device)
_empty_context = einops.repeat(_empty_context, 'L D -> B L D', B=x.size(0))
_uncond = nnet_ema(x, context=_empty_context)
res = _cond + scale * (_cond - _uncond)
if lambdaA is not None:
res = _cond_w_adapter + lambdaA*(_cond_w_adapter - _cond) + lambdaB*(_cond - _uncond)
return res
def unprocess(x):
x.clamp_(0., 1.)
return x
vq_model = taming.models.vqgan.get_model('vq-f16-jax.yaml')
vq_model.eval()
vq_model.requires_grad_(False)
vq_model.to(device)
## config
muse = MUSE(codebook_size=vq_model.n_embed, device=device, **config.muse)
train_state = utils.initialize_train_state(config, device)
train_state.resume(ckpt_root=config.resume_root)
nnet_ema = train_state.nnet_ema
nnet_ema.eval()
nnet_ema.requires_grad_(False)
nnet_ema.to(device)
style_ref = {
"None":None,
"0102":"style_adapter/0102.pth",
"0103":"style_adapter/0103.pth",
"0106":"style_adapter/0106.pth",
"0108":"style_adapter/0108.pth",
"0301":"style_adapter/0301.pth",
"0305":"style_adapter/0305.pth",
}
style_postfix ={
"None":"",
"0102":" in watercolor painting style",
"0103":" in watercolor painting style",
"0106":" in line drawing style",
"0108":" in oil painting style",
"0301":" in 3d rendering style",
"0305":" in kid crayon drawing style",
}
def decode(_batch):
return vq_model.decode_code(_batch)
def process(prompt,num_samples,lambdaA,lambdaB,style,seed,sample_steps,image=None):
config.sample.lambdaA = lambdaA
config.sample.lambdaB = lambdaB
config.sample.sample_steps = sample_steps
print(style)
adapter_path = style_ref[style]
adapter_postfix = style_postfix[style]
print(f"load adapter path: {adapter_path}")
if adapter_path is not None:
nnet_ema.adapter.load_state_dict(torch.load(adapter_path))
else:
config.sample.lambdaA=None
config.sample.lambdaB=None
print("load adapter Done!")
# Encode prompt
prompt = prompt+adapter_postfix
text_tokens = tokenizer(prompt).to(device)
text_embedding = prompt_model.encode_text(text_tokens)
text_embedding = text_embedding.repeat(num_samples, 1, 1) # B 77 1280
print(text_embedding.shape)
print(f"lambdaA: {lambdaA}, lambdaB: {lambdaB}, sample_steps: {sample_steps}")
if seed==-1:
seed = random.randint(0,65535)
config.seed = seed
print(f"seed: {seed}")
set_seed(config.seed)
res = muse.generate(config,num_samples,cfg_nnet,decode,is_eval=True,context=text_embedding)
print(res.shape)
res = (res*255+0.5).clamp_(0,255).permute(0,2,3,1).to('cpu',torch.uint8).numpy()
im = [res[i] for i in range(num_samples)]
return im
block = gr.Blocks()
with block:
with gr.Row():
gr.Markdown("## StyleDrop based on Muse (Inference Only) ")
with gr.Row():
with gr.Column():
prompt = gr.Textbox(label="Prompt")
run_button = gr.Button(label="Run")
num_samples = gr.Slider(label="Images", minimum=1, maximum=12, value=1, step=1)
seed = gr.Slider(label="Seed", minimum=-1, maximum=2147483647, step=1, value=1234)
style = gr.Radio(choices=["0102","0103","0106","0108","0305","None"],type="value",value="None",label="Style")
with gr.Accordion("Advanced options",open=False):
lambdaA = gr.Slider(label="lambdaA", minimum=0.0, maximum=5.0, value=2.0, step=0.01)
lambdaB = gr.Slider(label="lambdaB", minimum=0.0, maximum=10.0, value=5.0, step=0.01)
sample_steps = gr.Slider(label="Sample steps", minimum=1, maximum=50, value=36, step=1)
image=gr.Image(value=None)
with gr.Column():
result_gallery = gr.Gallery(label='Output', show_label=False, elem_id="gallery").style(columns=2, height='auto')
with gr.Row():
examples = [
[
"A banana on the table",
1,2.0,5.0,"0103",1234,36,
"data/image_01_03.jpg",
],
[
"A cow",
1,2.0,5.0,"0102",1234,36,
"data/image_01_02.jpg",
],
[
"A portrait of tabby cat",
1,2.0,5.0,"0106",1234,36,
"data/image_01_06.jpg",
],
[
"A church in the field",
1,2.0,5.0,"0108",1234,36,
"data/image_01_08.jpg",
],
[
"A Christmas tree",
1,2.0,5.0,"0305",1234,36,
"data/image_03_05.jpg",
]
]
gr.Examples(examples=examples,
fn=process,
inputs=[
prompt,
num_samples,lambdaA,lambdaB,style,seed,sample_steps,image,
],
outputs=result_gallery,
cache_examples=os.getenv('SYSTEM') == 'spaces'
)
ips = [prompt,num_samples,lambdaA,lambdaB,style,seed,sample_steps,image]
run_button.click(
fn=process,
inputs=ips,
outputs=[result_gallery]
)
block.queue().launch(share=False)
|