File size: 17,904 Bytes
28c6826
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
"""PyTorch CspNet

A PyTorch implementation of Cross Stage Partial Networks including:
* CSPResNet50
* CSPResNeXt50
* CSPDarkNet53
* and DarkNet53 for good measure

Based on paper `CSPNet: A New Backbone that can Enhance Learning Capability of CNN` - https://arxiv.org/abs/1911.11929

Reference impl via darknet cfg files at https://github.com/WongKinYiu/CrossStagePartialNetworks

Hacked together by / Copyright 2020 Ross Wightman
"""
import torch
import torch.nn as nn
import torch.nn.functional as F

from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
from .helpers import build_model_with_cfg
from .layers import ClassifierHead, ConvBnAct, DropPath, create_attn, get_norm_act_layer
from .registry import register_model


__all__ = ['CspNet']  # model_registry will add each entrypoint fn to this


def _cfg(url='', **kwargs):
    return {
        'url': url,
        'num_classes': 1000, 'input_size': (3, 256, 256), 'pool_size': (8, 8),
        'crop_pct': 0.887, 'interpolation': 'bilinear',
        'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD,
        'first_conv': 'stem.conv1.conv', 'classifier': 'head.fc',
        **kwargs
    }


default_cfgs = {
    'cspresnet50': _cfg(
        url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/cspresnet50_ra-d3e8d487.pth'),
    'cspresnet50d': _cfg(url=''),
    'cspresnet50w': _cfg(url=''),
    'cspresnext50': _cfg(
        url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/cspresnext50_ra_224-648b4713.pth',
        input_size=(3, 224, 224), pool_size=(7, 7), crop_pct=0.875  # FIXME I trained this at 224x224, not 256 like ref impl
    ),
    'cspresnext50_iabn': _cfg(url=''),
    'cspdarknet53': _cfg(
        url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/cspdarknet53_ra_256-d05c7c21.pth'),
    'cspdarknet53_iabn': _cfg(url=''),
    'darknet53': _cfg(url=''),
}


model_cfgs = dict(
    cspresnet50=dict(
        stem=dict(out_chs=64, kernel_size=7, stride=2, pool='max'),
        stage=dict(
            out_chs=(128, 256, 512, 1024),
            depth=(3, 3, 5, 2),
            stride=(1,) + (2,) * 3,
            exp_ratio=(2.,) * 4,
            bottle_ratio=(0.5,) * 4,
            block_ratio=(1.,) * 4,
            cross_linear=True,
        )
    ),
    cspresnet50d=dict(
        stem=dict(out_chs=[32, 32, 64], kernel_size=3, stride=2, pool='max'),
        stage=dict(
            out_chs=(128, 256, 512, 1024),
            depth=(3, 3, 5, 2),
            stride=(1,) + (2,) * 3,
            exp_ratio=(2.,) * 4,
            bottle_ratio=(0.5,) * 4,
            block_ratio=(1.,) * 4,
            cross_linear=True,
        )
    ),
    cspresnet50w=dict(
        stem=dict(out_chs=[32, 32, 64], kernel_size=3, stride=2, pool='max'),
        stage=dict(
            out_chs=(256, 512, 1024, 2048),
            depth=(3, 3, 5, 2),
            stride=(1,) + (2,) * 3,
            exp_ratio=(1.,) * 4,
            bottle_ratio=(0.25,) * 4,
            block_ratio=(0.5,) * 4,
            cross_linear=True,
        )
    ),
    cspresnext50=dict(
        stem=dict(out_chs=64, kernel_size=7, stride=2, pool='max'),
        stage=dict(
            out_chs=(256, 512, 1024, 2048),
            depth=(3, 3, 5, 2),
            stride=(1,) + (2,) * 3,
            groups=(32,) * 4,
            exp_ratio=(1.,) * 4,
            bottle_ratio=(1.,) * 4,
            block_ratio=(0.5,) * 4,
            cross_linear=True,
        )
    ),
    cspdarknet53=dict(
        stem=dict(out_chs=32, kernel_size=3, stride=1, pool=''),
        stage=dict(
            out_chs=(64, 128, 256, 512, 1024),
            depth=(1, 2, 8, 8, 4),
            stride=(2,) * 5,
            exp_ratio=(2.,) + (1.,) * 4,
            bottle_ratio=(0.5,) + (1.0,) * 4,
            block_ratio=(1.,) + (0.5,) * 4,
            down_growth=True,
        )
    ),
    darknet53=dict(
        stem=dict(out_chs=32, kernel_size=3, stride=1, pool=''),
        stage=dict(
            out_chs=(64, 128, 256, 512, 1024),
            depth=(1, 2, 8, 8, 4),
            stride=(2,) * 5,
            bottle_ratio=(0.5,) * 5,
            block_ratio=(1.,) * 5,
        )
    )
)


def create_stem(
        in_chans=3, out_chs=32, kernel_size=3, stride=2, pool='',
        act_layer=None, norm_layer=None, aa_layer=None):
    stem = nn.Sequential()
    if not isinstance(out_chs, (tuple, list)):
        out_chs = [out_chs]
    assert len(out_chs)
    in_c = in_chans
    for i, out_c in enumerate(out_chs):
        conv_name = f'conv{i + 1}'
        stem.add_module(conv_name, ConvBnAct(
            in_c, out_c, kernel_size, stride=stride if i == 0 else 1,
            act_layer=act_layer, norm_layer=norm_layer))
        in_c = out_c
        last_conv = conv_name
    if pool:
        if aa_layer is not None:
            stem.add_module('pool', nn.MaxPool2d(kernel_size=3, stride=1, padding=1))
            stem.add_module('aa', aa_layer(channels=in_c, stride=2))
        else:
            stem.add_module('pool', nn.MaxPool2d(kernel_size=3, stride=2, padding=1))
    return stem, dict(num_chs=in_c, reduction=stride, module='.'.join(['stem', last_conv]))


class ResBottleneck(nn.Module):
    """ ResNe(X)t Bottleneck Block
    """

    def __init__(self, in_chs, out_chs, dilation=1, bottle_ratio=0.25, groups=1,
                 act_layer=nn.ReLU, norm_layer=nn.BatchNorm2d, attn_last=False,
                 attn_layer=None, aa_layer=None, drop_block=None, drop_path=None):
        super(ResBottleneck, self).__init__()
        mid_chs = int(round(out_chs * bottle_ratio))
        ckwargs = dict(act_layer=act_layer, norm_layer=norm_layer, aa_layer=aa_layer, drop_block=drop_block)

        self.conv1 = ConvBnAct(in_chs, mid_chs, kernel_size=1, **ckwargs)
        self.conv2 = ConvBnAct(mid_chs, mid_chs, kernel_size=3, dilation=dilation, groups=groups, **ckwargs)
        self.attn2 = create_attn(attn_layer, channels=mid_chs) if not attn_last else None
        self.conv3 = ConvBnAct(mid_chs, out_chs, kernel_size=1, apply_act=False, **ckwargs)
        self.attn3 = create_attn(attn_layer, channels=out_chs) if attn_last else None
        self.drop_path = drop_path
        self.act3 = act_layer(inplace=True)

    def zero_init_last_bn(self):
        nn.init.zeros_(self.conv3.bn.weight)

    def forward(self, x):
        shortcut = x
        x = self.conv1(x)
        x = self.conv2(x)
        if self.attn2 is not None:
            x = self.attn2(x)
        x = self.conv3(x)
        if self.attn3 is not None:
            x = self.attn3(x)
        if self.drop_path is not None:
            x = self.drop_path(x)
        x = x + shortcut
        # FIXME partial shortcut needed if first block handled as per original, not used for my current impl
        #x[:, :shortcut.size(1)] += shortcut
        x = self.act3(x)
        return x


class DarkBlock(nn.Module):
    """ DarkNet Block
    """

    def __init__(self, in_chs, out_chs, dilation=1, bottle_ratio=0.5, groups=1,
                 act_layer=nn.ReLU, norm_layer=nn.BatchNorm2d, attn_layer=None, aa_layer=None,
                 drop_block=None, drop_path=None):
        super(DarkBlock, self).__init__()
        mid_chs = int(round(out_chs * bottle_ratio))
        ckwargs = dict(act_layer=act_layer, norm_layer=norm_layer, aa_layer=aa_layer, drop_block=drop_block)
        self.conv1 = ConvBnAct(in_chs, mid_chs, kernel_size=1, **ckwargs)
        self.conv2 = ConvBnAct(mid_chs, out_chs, kernel_size=3, dilation=dilation, groups=groups, **ckwargs)
        self.attn = create_attn(attn_layer, channels=out_chs)
        self.drop_path = drop_path

    def zero_init_last_bn(self):
        nn.init.zeros_(self.conv2.bn.weight)

    def forward(self, x):
        shortcut = x
        x = self.conv1(x)
        x = self.conv2(x)
        if self.attn is not None:
            x = self.attn(x)
        if self.drop_path is not None:
            x = self.drop_path(x)
        x = x + shortcut
        return x


class CrossStage(nn.Module):
    """Cross Stage."""
    def __init__(self, in_chs, out_chs, stride, dilation, depth, block_ratio=1., bottle_ratio=1., exp_ratio=1.,
                 groups=1, first_dilation=None, down_growth=False, cross_linear=False, block_dpr=None,
                 block_fn=ResBottleneck, **block_kwargs):
        super(CrossStage, self).__init__()
        first_dilation = first_dilation or dilation
        down_chs = out_chs if down_growth else in_chs  # grow downsample channels to output channels
        exp_chs = int(round(out_chs * exp_ratio))
        block_out_chs = int(round(out_chs * block_ratio))
        conv_kwargs = dict(act_layer=block_kwargs.get('act_layer'), norm_layer=block_kwargs.get('norm_layer'))

        if stride != 1 or first_dilation != dilation:
            self.conv_down = ConvBnAct(
                in_chs, down_chs, kernel_size=3, stride=stride, dilation=first_dilation, groups=groups,
                aa_layer=block_kwargs.get('aa_layer', None), **conv_kwargs)
            prev_chs = down_chs
        else:
            self.conv_down = None
            prev_chs = in_chs

        # FIXME this 1x1 expansion is pushed down into the cross and block paths in the darknet cfgs. Also,
        # there is also special case for the first stage for some of the model that results in uneven split
        # across the two paths. I did it this way for simplicity for now.
        self.conv_exp = ConvBnAct(prev_chs, exp_chs, kernel_size=1, apply_act=not cross_linear, **conv_kwargs)
        prev_chs = exp_chs // 2  # output of conv_exp is always split in two

        self.blocks = nn.Sequential()
        for i in range(depth):
            drop_path = DropPath(block_dpr[i]) if block_dpr and block_dpr[i] else None
            self.blocks.add_module(str(i), block_fn(
                prev_chs, block_out_chs, dilation, bottle_ratio, groups, drop_path=drop_path, **block_kwargs))
            prev_chs = block_out_chs

        # transition convs
        self.conv_transition_b = ConvBnAct(prev_chs, exp_chs // 2, kernel_size=1, **conv_kwargs)
        self.conv_transition = ConvBnAct(exp_chs, out_chs, kernel_size=1, **conv_kwargs)

    def forward(self, x):
        if self.conv_down is not None:
            x = self.conv_down(x)
        x = self.conv_exp(x)
        xs, xb = x.chunk(2, dim=1)
        xb = self.blocks(xb)
        out = self.conv_transition(torch.cat([xs, self.conv_transition_b(xb)], dim=1))
        return out


class DarkStage(nn.Module):
    """DarkNet stage."""

    def __init__(self, in_chs, out_chs, stride, dilation, depth, block_ratio=1., bottle_ratio=1., groups=1,
                 first_dilation=None, block_fn=ResBottleneck, block_dpr=None, **block_kwargs):
        super(DarkStage, self).__init__()
        first_dilation = first_dilation or dilation

        self.conv_down = ConvBnAct(
            in_chs, out_chs, kernel_size=3, stride=stride, dilation=first_dilation, groups=groups,
            act_layer=block_kwargs.get('act_layer'), norm_layer=block_kwargs.get('norm_layer'),
            aa_layer=block_kwargs.get('aa_layer', None))

        prev_chs = out_chs
        block_out_chs = int(round(out_chs * block_ratio))
        self.blocks = nn.Sequential()
        for i in range(depth):
            drop_path = DropPath(block_dpr[i]) if block_dpr and block_dpr[i] else None
            self.blocks.add_module(str(i), block_fn(
                prev_chs, block_out_chs, dilation, bottle_ratio, groups, drop_path=drop_path, **block_kwargs))
            prev_chs = block_out_chs

    def forward(self, x):
        x = self.conv_down(x)
        x = self.blocks(x)
        return x


def _cfg_to_stage_args(cfg, curr_stride=2, output_stride=32, drop_path_rate=0.):
    # get per stage args for stage and containing blocks, calculate strides to meet target output_stride
    num_stages = len(cfg['depth'])
    if 'groups' not in cfg:
        cfg['groups'] = (1,) * num_stages
    if 'down_growth' in cfg and not isinstance(cfg['down_growth'], (list, tuple)):
        cfg['down_growth'] = (cfg['down_growth'],) * num_stages
    if 'cross_linear' in cfg and not isinstance(cfg['cross_linear'], (list, tuple)):
        cfg['cross_linear'] = (cfg['cross_linear'],) * num_stages
    cfg['block_dpr'] = [None] * num_stages if not drop_path_rate else \
        [x.tolist() for x in torch.linspace(0, drop_path_rate, sum(cfg['depth'])).split(cfg['depth'])]
    stage_strides = []
    stage_dilations = []
    stage_first_dilations = []
    dilation = 1
    for cfg_stride in cfg['stride']:
        stage_first_dilations.append(dilation)
        if curr_stride >= output_stride:
            dilation *= cfg_stride
            stride = 1
        else:
            stride = cfg_stride
            curr_stride *= stride
        stage_strides.append(stride)
        stage_dilations.append(dilation)
    cfg['stride'] = stage_strides
    cfg['dilation'] = stage_dilations
    cfg['first_dilation'] = stage_first_dilations
    stage_args = [dict(zip(cfg.keys(), values)) for values in zip(*cfg.values())]
    return stage_args


class CspNet(nn.Module):
    """Cross Stage Partial base model.

    Paper: `CSPNet: A New Backbone that can Enhance Learning Capability of CNN` - https://arxiv.org/abs/1911.11929
    Ref Impl: https://github.com/WongKinYiu/CrossStagePartialNetworks

    NOTE: There are differences in the way I handle the 1x1 'expansion' conv in this impl vs the
    darknet impl. I did it this way for simplicity and less special cases.
    """

    def __init__(self, cfg, in_chans=3, num_classes=1000, output_stride=32, global_pool='avg', drop_rate=0.,
                 act_layer=nn.LeakyReLU, norm_layer=nn.BatchNorm2d, aa_layer=None, drop_path_rate=0.,
                 zero_init_last_bn=True, stage_fn=CrossStage, block_fn=ResBottleneck):
        super().__init__()
        self.num_classes = num_classes
        self.drop_rate = drop_rate
        assert output_stride in (8, 16, 32)
        layer_args = dict(act_layer=act_layer, norm_layer=norm_layer, aa_layer=aa_layer)

        # Construct the stem
        self.stem, stem_feat_info = create_stem(in_chans, **cfg['stem'], **layer_args)
        self.feature_info = [stem_feat_info]
        prev_chs = stem_feat_info['num_chs']
        curr_stride = stem_feat_info['reduction']  # reduction does not include pool
        if cfg['stem']['pool']:
            curr_stride *= 2

        # Construct the stages
        per_stage_args = _cfg_to_stage_args(
            cfg['stage'], curr_stride=curr_stride, output_stride=output_stride, drop_path_rate=drop_path_rate)
        self.stages = nn.Sequential()
        for i, sa in enumerate(per_stage_args):
            self.stages.add_module(
                str(i), stage_fn(prev_chs, **sa, **layer_args, block_fn=block_fn))
            prev_chs = sa['out_chs']
            curr_stride *= sa['stride']
            self.feature_info += [dict(num_chs=prev_chs, reduction=curr_stride, module=f'stages.{i}')]

        # Construct the head
        self.num_features = prev_chs
        self.head = ClassifierHead(
            in_chs=prev_chs, num_classes=num_classes, pool_type=global_pool, drop_rate=drop_rate)

        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
            elif isinstance(m, nn.BatchNorm2d):
                nn.init.ones_(m.weight)
                nn.init.zeros_(m.bias)
            elif isinstance(m, nn.Linear):
                nn.init.normal_(m.weight, mean=0.0, std=0.01)
                nn.init.zeros_(m.bias)
        if zero_init_last_bn:
            for m in self.modules():
                if hasattr(m, 'zero_init_last_bn'):
                    m.zero_init_last_bn()

    def get_classifier(self):
        return self.head.fc

    def reset_classifier(self, num_classes, global_pool='avg'):
        self.head = ClassifierHead(self.num_features, num_classes, pool_type=global_pool, drop_rate=self.drop_rate)

    def forward_features(self, x):
        x = self.stem(x)
        x = self.stages(x)
        return x

    def forward(self, x):
        x = self.forward_features(x)
        x = self.head(x)
        return x


def _create_cspnet(variant, pretrained=False, **kwargs):
    cfg_variant = variant.split('_')[0]
    return build_model_with_cfg(
        CspNet, variant, pretrained, default_cfg=default_cfgs[variant],
        feature_cfg=dict(flatten_sequential=True), model_cfg=model_cfgs[cfg_variant], **kwargs)


@register_model
def cspresnet50(pretrained=False, **kwargs):
    return _create_cspnet('cspresnet50', pretrained=pretrained, **kwargs)


@register_model
def cspresnet50d(pretrained=False, **kwargs):
    return _create_cspnet('cspresnet50d', pretrained=pretrained, **kwargs)


@register_model
def cspresnet50w(pretrained=False, **kwargs):
    return _create_cspnet('cspresnet50w', pretrained=pretrained, **kwargs)


@register_model
def cspresnext50(pretrained=False, **kwargs):
    return _create_cspnet('cspresnext50', pretrained=pretrained, **kwargs)


@register_model
def cspresnext50_iabn(pretrained=False, **kwargs):
    norm_layer = get_norm_act_layer('iabn')
    return _create_cspnet('cspresnext50_iabn', pretrained=pretrained, norm_layer=norm_layer, **kwargs)


@register_model
def cspdarknet53(pretrained=False, **kwargs):
    return _create_cspnet('cspdarknet53', pretrained=pretrained, block_fn=DarkBlock, **kwargs)


@register_model
def cspdarknet53_iabn(pretrained=False, **kwargs):
    norm_layer = get_norm_act_layer('iabn')
    return _create_cspnet('cspdarknet53_iabn', pretrained=pretrained, block_fn=DarkBlock, norm_layer=norm_layer, **kwargs)


@register_model
def darknet53(pretrained=False, **kwargs):
    return _create_cspnet('darknet53', pretrained=pretrained, block_fn=DarkBlock, stage_fn=DarkStage, **kwargs)