Spaces:
Sleeping
Sleeping
File size: 17,904 Bytes
28c6826 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 |
"""PyTorch CspNet
A PyTorch implementation of Cross Stage Partial Networks including:
* CSPResNet50
* CSPResNeXt50
* CSPDarkNet53
* and DarkNet53 for good measure
Based on paper `CSPNet: A New Backbone that can Enhance Learning Capability of CNN` - https://arxiv.org/abs/1911.11929
Reference impl via darknet cfg files at https://github.com/WongKinYiu/CrossStagePartialNetworks
Hacked together by / Copyright 2020 Ross Wightman
"""
import torch
import torch.nn as nn
import torch.nn.functional as F
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
from .helpers import build_model_with_cfg
from .layers import ClassifierHead, ConvBnAct, DropPath, create_attn, get_norm_act_layer
from .registry import register_model
__all__ = ['CspNet'] # model_registry will add each entrypoint fn to this
def _cfg(url='', **kwargs):
return {
'url': url,
'num_classes': 1000, 'input_size': (3, 256, 256), 'pool_size': (8, 8),
'crop_pct': 0.887, 'interpolation': 'bilinear',
'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD,
'first_conv': 'stem.conv1.conv', 'classifier': 'head.fc',
**kwargs
}
default_cfgs = {
'cspresnet50': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/cspresnet50_ra-d3e8d487.pth'),
'cspresnet50d': _cfg(url=''),
'cspresnet50w': _cfg(url=''),
'cspresnext50': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/cspresnext50_ra_224-648b4713.pth',
input_size=(3, 224, 224), pool_size=(7, 7), crop_pct=0.875 # FIXME I trained this at 224x224, not 256 like ref impl
),
'cspresnext50_iabn': _cfg(url=''),
'cspdarknet53': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/cspdarknet53_ra_256-d05c7c21.pth'),
'cspdarknet53_iabn': _cfg(url=''),
'darknet53': _cfg(url=''),
}
model_cfgs = dict(
cspresnet50=dict(
stem=dict(out_chs=64, kernel_size=7, stride=2, pool='max'),
stage=dict(
out_chs=(128, 256, 512, 1024),
depth=(3, 3, 5, 2),
stride=(1,) + (2,) * 3,
exp_ratio=(2.,) * 4,
bottle_ratio=(0.5,) * 4,
block_ratio=(1.,) * 4,
cross_linear=True,
)
),
cspresnet50d=dict(
stem=dict(out_chs=[32, 32, 64], kernel_size=3, stride=2, pool='max'),
stage=dict(
out_chs=(128, 256, 512, 1024),
depth=(3, 3, 5, 2),
stride=(1,) + (2,) * 3,
exp_ratio=(2.,) * 4,
bottle_ratio=(0.5,) * 4,
block_ratio=(1.,) * 4,
cross_linear=True,
)
),
cspresnet50w=dict(
stem=dict(out_chs=[32, 32, 64], kernel_size=3, stride=2, pool='max'),
stage=dict(
out_chs=(256, 512, 1024, 2048),
depth=(3, 3, 5, 2),
stride=(1,) + (2,) * 3,
exp_ratio=(1.,) * 4,
bottle_ratio=(0.25,) * 4,
block_ratio=(0.5,) * 4,
cross_linear=True,
)
),
cspresnext50=dict(
stem=dict(out_chs=64, kernel_size=7, stride=2, pool='max'),
stage=dict(
out_chs=(256, 512, 1024, 2048),
depth=(3, 3, 5, 2),
stride=(1,) + (2,) * 3,
groups=(32,) * 4,
exp_ratio=(1.,) * 4,
bottle_ratio=(1.,) * 4,
block_ratio=(0.5,) * 4,
cross_linear=True,
)
),
cspdarknet53=dict(
stem=dict(out_chs=32, kernel_size=3, stride=1, pool=''),
stage=dict(
out_chs=(64, 128, 256, 512, 1024),
depth=(1, 2, 8, 8, 4),
stride=(2,) * 5,
exp_ratio=(2.,) + (1.,) * 4,
bottle_ratio=(0.5,) + (1.0,) * 4,
block_ratio=(1.,) + (0.5,) * 4,
down_growth=True,
)
),
darknet53=dict(
stem=dict(out_chs=32, kernel_size=3, stride=1, pool=''),
stage=dict(
out_chs=(64, 128, 256, 512, 1024),
depth=(1, 2, 8, 8, 4),
stride=(2,) * 5,
bottle_ratio=(0.5,) * 5,
block_ratio=(1.,) * 5,
)
)
)
def create_stem(
in_chans=3, out_chs=32, kernel_size=3, stride=2, pool='',
act_layer=None, norm_layer=None, aa_layer=None):
stem = nn.Sequential()
if not isinstance(out_chs, (tuple, list)):
out_chs = [out_chs]
assert len(out_chs)
in_c = in_chans
for i, out_c in enumerate(out_chs):
conv_name = f'conv{i + 1}'
stem.add_module(conv_name, ConvBnAct(
in_c, out_c, kernel_size, stride=stride if i == 0 else 1,
act_layer=act_layer, norm_layer=norm_layer))
in_c = out_c
last_conv = conv_name
if pool:
if aa_layer is not None:
stem.add_module('pool', nn.MaxPool2d(kernel_size=3, stride=1, padding=1))
stem.add_module('aa', aa_layer(channels=in_c, stride=2))
else:
stem.add_module('pool', nn.MaxPool2d(kernel_size=3, stride=2, padding=1))
return stem, dict(num_chs=in_c, reduction=stride, module='.'.join(['stem', last_conv]))
class ResBottleneck(nn.Module):
""" ResNe(X)t Bottleneck Block
"""
def __init__(self, in_chs, out_chs, dilation=1, bottle_ratio=0.25, groups=1,
act_layer=nn.ReLU, norm_layer=nn.BatchNorm2d, attn_last=False,
attn_layer=None, aa_layer=None, drop_block=None, drop_path=None):
super(ResBottleneck, self).__init__()
mid_chs = int(round(out_chs * bottle_ratio))
ckwargs = dict(act_layer=act_layer, norm_layer=norm_layer, aa_layer=aa_layer, drop_block=drop_block)
self.conv1 = ConvBnAct(in_chs, mid_chs, kernel_size=1, **ckwargs)
self.conv2 = ConvBnAct(mid_chs, mid_chs, kernel_size=3, dilation=dilation, groups=groups, **ckwargs)
self.attn2 = create_attn(attn_layer, channels=mid_chs) if not attn_last else None
self.conv3 = ConvBnAct(mid_chs, out_chs, kernel_size=1, apply_act=False, **ckwargs)
self.attn3 = create_attn(attn_layer, channels=out_chs) if attn_last else None
self.drop_path = drop_path
self.act3 = act_layer(inplace=True)
def zero_init_last_bn(self):
nn.init.zeros_(self.conv3.bn.weight)
def forward(self, x):
shortcut = x
x = self.conv1(x)
x = self.conv2(x)
if self.attn2 is not None:
x = self.attn2(x)
x = self.conv3(x)
if self.attn3 is not None:
x = self.attn3(x)
if self.drop_path is not None:
x = self.drop_path(x)
x = x + shortcut
# FIXME partial shortcut needed if first block handled as per original, not used for my current impl
#x[:, :shortcut.size(1)] += shortcut
x = self.act3(x)
return x
class DarkBlock(nn.Module):
""" DarkNet Block
"""
def __init__(self, in_chs, out_chs, dilation=1, bottle_ratio=0.5, groups=1,
act_layer=nn.ReLU, norm_layer=nn.BatchNorm2d, attn_layer=None, aa_layer=None,
drop_block=None, drop_path=None):
super(DarkBlock, self).__init__()
mid_chs = int(round(out_chs * bottle_ratio))
ckwargs = dict(act_layer=act_layer, norm_layer=norm_layer, aa_layer=aa_layer, drop_block=drop_block)
self.conv1 = ConvBnAct(in_chs, mid_chs, kernel_size=1, **ckwargs)
self.conv2 = ConvBnAct(mid_chs, out_chs, kernel_size=3, dilation=dilation, groups=groups, **ckwargs)
self.attn = create_attn(attn_layer, channels=out_chs)
self.drop_path = drop_path
def zero_init_last_bn(self):
nn.init.zeros_(self.conv2.bn.weight)
def forward(self, x):
shortcut = x
x = self.conv1(x)
x = self.conv2(x)
if self.attn is not None:
x = self.attn(x)
if self.drop_path is not None:
x = self.drop_path(x)
x = x + shortcut
return x
class CrossStage(nn.Module):
"""Cross Stage."""
def __init__(self, in_chs, out_chs, stride, dilation, depth, block_ratio=1., bottle_ratio=1., exp_ratio=1.,
groups=1, first_dilation=None, down_growth=False, cross_linear=False, block_dpr=None,
block_fn=ResBottleneck, **block_kwargs):
super(CrossStage, self).__init__()
first_dilation = first_dilation or dilation
down_chs = out_chs if down_growth else in_chs # grow downsample channels to output channels
exp_chs = int(round(out_chs * exp_ratio))
block_out_chs = int(round(out_chs * block_ratio))
conv_kwargs = dict(act_layer=block_kwargs.get('act_layer'), norm_layer=block_kwargs.get('norm_layer'))
if stride != 1 or first_dilation != dilation:
self.conv_down = ConvBnAct(
in_chs, down_chs, kernel_size=3, stride=stride, dilation=first_dilation, groups=groups,
aa_layer=block_kwargs.get('aa_layer', None), **conv_kwargs)
prev_chs = down_chs
else:
self.conv_down = None
prev_chs = in_chs
# FIXME this 1x1 expansion is pushed down into the cross and block paths in the darknet cfgs. Also,
# there is also special case for the first stage for some of the model that results in uneven split
# across the two paths. I did it this way for simplicity for now.
self.conv_exp = ConvBnAct(prev_chs, exp_chs, kernel_size=1, apply_act=not cross_linear, **conv_kwargs)
prev_chs = exp_chs // 2 # output of conv_exp is always split in two
self.blocks = nn.Sequential()
for i in range(depth):
drop_path = DropPath(block_dpr[i]) if block_dpr and block_dpr[i] else None
self.blocks.add_module(str(i), block_fn(
prev_chs, block_out_chs, dilation, bottle_ratio, groups, drop_path=drop_path, **block_kwargs))
prev_chs = block_out_chs
# transition convs
self.conv_transition_b = ConvBnAct(prev_chs, exp_chs // 2, kernel_size=1, **conv_kwargs)
self.conv_transition = ConvBnAct(exp_chs, out_chs, kernel_size=1, **conv_kwargs)
def forward(self, x):
if self.conv_down is not None:
x = self.conv_down(x)
x = self.conv_exp(x)
xs, xb = x.chunk(2, dim=1)
xb = self.blocks(xb)
out = self.conv_transition(torch.cat([xs, self.conv_transition_b(xb)], dim=1))
return out
class DarkStage(nn.Module):
"""DarkNet stage."""
def __init__(self, in_chs, out_chs, stride, dilation, depth, block_ratio=1., bottle_ratio=1., groups=1,
first_dilation=None, block_fn=ResBottleneck, block_dpr=None, **block_kwargs):
super(DarkStage, self).__init__()
first_dilation = first_dilation or dilation
self.conv_down = ConvBnAct(
in_chs, out_chs, kernel_size=3, stride=stride, dilation=first_dilation, groups=groups,
act_layer=block_kwargs.get('act_layer'), norm_layer=block_kwargs.get('norm_layer'),
aa_layer=block_kwargs.get('aa_layer', None))
prev_chs = out_chs
block_out_chs = int(round(out_chs * block_ratio))
self.blocks = nn.Sequential()
for i in range(depth):
drop_path = DropPath(block_dpr[i]) if block_dpr and block_dpr[i] else None
self.blocks.add_module(str(i), block_fn(
prev_chs, block_out_chs, dilation, bottle_ratio, groups, drop_path=drop_path, **block_kwargs))
prev_chs = block_out_chs
def forward(self, x):
x = self.conv_down(x)
x = self.blocks(x)
return x
def _cfg_to_stage_args(cfg, curr_stride=2, output_stride=32, drop_path_rate=0.):
# get per stage args for stage and containing blocks, calculate strides to meet target output_stride
num_stages = len(cfg['depth'])
if 'groups' not in cfg:
cfg['groups'] = (1,) * num_stages
if 'down_growth' in cfg and not isinstance(cfg['down_growth'], (list, tuple)):
cfg['down_growth'] = (cfg['down_growth'],) * num_stages
if 'cross_linear' in cfg and not isinstance(cfg['cross_linear'], (list, tuple)):
cfg['cross_linear'] = (cfg['cross_linear'],) * num_stages
cfg['block_dpr'] = [None] * num_stages if not drop_path_rate else \
[x.tolist() for x in torch.linspace(0, drop_path_rate, sum(cfg['depth'])).split(cfg['depth'])]
stage_strides = []
stage_dilations = []
stage_first_dilations = []
dilation = 1
for cfg_stride in cfg['stride']:
stage_first_dilations.append(dilation)
if curr_stride >= output_stride:
dilation *= cfg_stride
stride = 1
else:
stride = cfg_stride
curr_stride *= stride
stage_strides.append(stride)
stage_dilations.append(dilation)
cfg['stride'] = stage_strides
cfg['dilation'] = stage_dilations
cfg['first_dilation'] = stage_first_dilations
stage_args = [dict(zip(cfg.keys(), values)) for values in zip(*cfg.values())]
return stage_args
class CspNet(nn.Module):
"""Cross Stage Partial base model.
Paper: `CSPNet: A New Backbone that can Enhance Learning Capability of CNN` - https://arxiv.org/abs/1911.11929
Ref Impl: https://github.com/WongKinYiu/CrossStagePartialNetworks
NOTE: There are differences in the way I handle the 1x1 'expansion' conv in this impl vs the
darknet impl. I did it this way for simplicity and less special cases.
"""
def __init__(self, cfg, in_chans=3, num_classes=1000, output_stride=32, global_pool='avg', drop_rate=0.,
act_layer=nn.LeakyReLU, norm_layer=nn.BatchNorm2d, aa_layer=None, drop_path_rate=0.,
zero_init_last_bn=True, stage_fn=CrossStage, block_fn=ResBottleneck):
super().__init__()
self.num_classes = num_classes
self.drop_rate = drop_rate
assert output_stride in (8, 16, 32)
layer_args = dict(act_layer=act_layer, norm_layer=norm_layer, aa_layer=aa_layer)
# Construct the stem
self.stem, stem_feat_info = create_stem(in_chans, **cfg['stem'], **layer_args)
self.feature_info = [stem_feat_info]
prev_chs = stem_feat_info['num_chs']
curr_stride = stem_feat_info['reduction'] # reduction does not include pool
if cfg['stem']['pool']:
curr_stride *= 2
# Construct the stages
per_stage_args = _cfg_to_stage_args(
cfg['stage'], curr_stride=curr_stride, output_stride=output_stride, drop_path_rate=drop_path_rate)
self.stages = nn.Sequential()
for i, sa in enumerate(per_stage_args):
self.stages.add_module(
str(i), stage_fn(prev_chs, **sa, **layer_args, block_fn=block_fn))
prev_chs = sa['out_chs']
curr_stride *= sa['stride']
self.feature_info += [dict(num_chs=prev_chs, reduction=curr_stride, module=f'stages.{i}')]
# Construct the head
self.num_features = prev_chs
self.head = ClassifierHead(
in_chs=prev_chs, num_classes=num_classes, pool_type=global_pool, drop_rate=drop_rate)
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
elif isinstance(m, nn.BatchNorm2d):
nn.init.ones_(m.weight)
nn.init.zeros_(m.bias)
elif isinstance(m, nn.Linear):
nn.init.normal_(m.weight, mean=0.0, std=0.01)
nn.init.zeros_(m.bias)
if zero_init_last_bn:
for m in self.modules():
if hasattr(m, 'zero_init_last_bn'):
m.zero_init_last_bn()
def get_classifier(self):
return self.head.fc
def reset_classifier(self, num_classes, global_pool='avg'):
self.head = ClassifierHead(self.num_features, num_classes, pool_type=global_pool, drop_rate=self.drop_rate)
def forward_features(self, x):
x = self.stem(x)
x = self.stages(x)
return x
def forward(self, x):
x = self.forward_features(x)
x = self.head(x)
return x
def _create_cspnet(variant, pretrained=False, **kwargs):
cfg_variant = variant.split('_')[0]
return build_model_with_cfg(
CspNet, variant, pretrained, default_cfg=default_cfgs[variant],
feature_cfg=dict(flatten_sequential=True), model_cfg=model_cfgs[cfg_variant], **kwargs)
@register_model
def cspresnet50(pretrained=False, **kwargs):
return _create_cspnet('cspresnet50', pretrained=pretrained, **kwargs)
@register_model
def cspresnet50d(pretrained=False, **kwargs):
return _create_cspnet('cspresnet50d', pretrained=pretrained, **kwargs)
@register_model
def cspresnet50w(pretrained=False, **kwargs):
return _create_cspnet('cspresnet50w', pretrained=pretrained, **kwargs)
@register_model
def cspresnext50(pretrained=False, **kwargs):
return _create_cspnet('cspresnext50', pretrained=pretrained, **kwargs)
@register_model
def cspresnext50_iabn(pretrained=False, **kwargs):
norm_layer = get_norm_act_layer('iabn')
return _create_cspnet('cspresnext50_iabn', pretrained=pretrained, norm_layer=norm_layer, **kwargs)
@register_model
def cspdarknet53(pretrained=False, **kwargs):
return _create_cspnet('cspdarknet53', pretrained=pretrained, block_fn=DarkBlock, **kwargs)
@register_model
def cspdarknet53_iabn(pretrained=False, **kwargs):
norm_layer = get_norm_act_layer('iabn')
return _create_cspnet('cspdarknet53_iabn', pretrained=pretrained, block_fn=DarkBlock, norm_layer=norm_layer, **kwargs)
@register_model
def darknet53(pretrained=False, **kwargs):
return _create_cspnet('darknet53', pretrained=pretrained, block_fn=DarkBlock, stage_fn=DarkStage, **kwargs)
|