Spaces:
Sleeping
Sleeping
File size: 17,439 Bytes
28c6826 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 |
from typing import Optional
import torch
from torch import nn
from torch.nn import functional as F
import numpy as np
from dataclasses import dataclass
from .transformer import (
LayerNormFp32,
LayerNorm,
QuickGELU,
MultimodalTransformer,
)
from .model import CLIPTextCfg, CLIPVisionCfg, _build_vision_tower, _build_text_tower
try:
from transformers import (
BeamSearchScorer,
LogitsProcessorList,
TopPLogitsWarper,
TopKLogitsWarper,
RepetitionPenaltyLogitsProcessor,
MinLengthLogitsProcessor,
MaxLengthCriteria,
StoppingCriteriaList
)
GENERATION_TYPES = {
"top_k": TopKLogitsWarper,
"top_p": TopPLogitsWarper,
"beam_search": "beam_search"
}
_has_transformers = True
except ImportError as e:
GENERATION_TYPES = {
"top_k": None,
"top_p": None,
"beam_search": "beam_search"
}
_has_transformers = False
@dataclass
class MultimodalCfg(CLIPTextCfg):
mlp_ratio: int = 4
dim_head: int = 64
heads: int = 8
n_queries: int = 256
attn_pooler_heads: int = 8
def _build_text_decoder_tower(
embed_dim,
multimodal_cfg,
quick_gelu: bool = False,
cast_dtype: Optional[torch.dtype] = None,
):
multimodal_cfg = MultimodalCfg(**multimodal_cfg) if isinstance(multimodal_cfg, dict) else multimodal_cfg
act_layer = QuickGELU if quick_gelu else nn.GELU
norm_layer = (
LayerNormFp32 if cast_dtype in (torch.float16, torch.bfloat16) else LayerNorm
)
decoder = MultimodalTransformer(
context_length=multimodal_cfg.context_length,
width=multimodal_cfg.width,
heads=multimodal_cfg.heads,
layers=multimodal_cfg.layers,
ls_init_value=multimodal_cfg.ls_init_value,
output_dim=embed_dim,
act_layer=act_layer,
norm_layer=norm_layer,
)
return decoder
class CoCa(nn.Module):
def __init__(
self,
embed_dim,
multimodal_cfg: MultimodalCfg,
text_cfg: CLIPTextCfg,
vision_cfg: CLIPVisionCfg,
quick_gelu: bool = False,
cast_dtype: Optional[torch.dtype] = None,
pad_id: int = 0,
):
super().__init__()
multimodal_cfg = MultimodalCfg(**multimodal_cfg) if isinstance(multimodal_cfg, dict) else multimodal_cfg
text_cfg = CLIPTextCfg(**text_cfg) if isinstance(text_cfg, dict) else text_cfg
vision_cfg = CLIPVisionCfg(**vision_cfg) if isinstance(vision_cfg, dict) else vision_cfg
self.text = _build_text_tower(
embed_dim=embed_dim,
text_cfg=text_cfg,
quick_gelu=quick_gelu,
cast_dtype=cast_dtype,
)
vocab_size = (
text_cfg.vocab_size # for hf models
if hasattr(text_cfg, "hf_model_name") and text_cfg.hf_model_name is not None
else text_cfg.vocab_size
)
self.visual = _build_vision_tower(
embed_dim=embed_dim,
vision_cfg=vision_cfg,
quick_gelu=quick_gelu,
cast_dtype=cast_dtype,
)
self.text_decoder = _build_text_decoder_tower(
vocab_size,
multimodal_cfg=multimodal_cfg,
quick_gelu=quick_gelu,
cast_dtype=cast_dtype,
)
self.logit_scale = nn.Parameter(torch.ones([]) * np.log(1 / 0.07))
self.pad_id = pad_id
@torch.jit.ignore
def set_grad_checkpointing(self, enable=True):
self.visual.set_grad_checkpointing(enable)
self.text.set_grad_checkpointing(enable)
self.text_decoder.set_grad_checkpointing(enable)
def _encode_image(self, images, normalize=True):
image_latent, tokens_embs = self.visual(images)
image_latent = F.normalize(image_latent, dim=-1) if normalize else image_latent
return image_latent, tokens_embs
def _encode_text(self, text, normalize=True, embed_cls=True):
text = text[:, :-1] if embed_cls else text # make space for CLS token
text_latent, token_emb = self.text(text)
text_latent = F.normalize(text_latent, dim=-1) if normalize else text_latent
return text_latent, token_emb
def encode_image(self, images, normalize=True):
image_latent, _ = self._encode_image(images, normalize=normalize)
return image_latent
def encode_text(self, text, normalize=True, embed_cls=True):
text_latent, _ = self._encode_text(text, normalize=normalize, embed_cls=embed_cls)
return text_latent
def forward(self, image, text, embed_cls=True, image_latent=None, image_embs=None):
text_latent, token_embs = self._encode_text(text, embed_cls=embed_cls)
if image_latent is None or image_embs is None:
image_latent, image_embs = self._encode_image(image)
# TODO: add assertion to avoid bugs?
labels = text[:, -token_embs.shape[1]:]
logits = self.text_decoder(image_embs, token_embs)
return {
"image_features": image_latent,
"text_features": text_latent,
"logits": logits,
"labels": labels,
"logit_scale": self.logit_scale.exp()
}
def generate(
self,
image,
text=None,
seq_len=30,
max_seq_len=77,
temperature=1.,
generation_type="beam_search",
top_p=0.1, # keep tokens in the 1 - top_p quantile
top_k=1, # keeps the top_k most probable tokens
pad_token_id=None,
eos_token_id=None,
sot_token_id=None,
num_beams=6,
num_beam_groups=3,
min_seq_len=5,
stopping_criteria=None,
repetition_penalty=1.0,
fixed_output_length=False # if True output.shape == (batch_size, seq_len)
):
# taking many ideas and components from HuggingFace GenerationMixin
# https://huggingface.co/docs/transformers/main/en/main_classes/text_generation
assert _has_transformers, "Please install transformers for generate functionality. `pip install transformers`."
assert seq_len > min_seq_len, "seq_len must be larger than min_seq_len"
with torch.no_grad():
sot_token_id = 49406 if sot_token_id is None else sot_token_id
eos_token_id = 49407 if eos_token_id is None else eos_token_id
pad_token_id = self.pad_id if pad_token_id is None else pad_token_id
logit_processor = LogitsProcessorList(
[
MinLengthLogitsProcessor(min_seq_len, eos_token_id),
RepetitionPenaltyLogitsProcessor(repetition_penalty),
]
)
if stopping_criteria is None:
stopping_criteria = [MaxLengthCriteria(max_length=seq_len)]
stopping_criteria = StoppingCriteriaList(
stopping_criteria
)
device = image.device
if generation_type == "beam_search":
output = self._generate_beamsearch(
image_inputs = image,
pad_token_id=pad_token_id,
eos_token_id=eos_token_id,
sot_token_id=sot_token_id,
num_beams=num_beams,
num_beam_groups=num_beam_groups,
min_seq_len=min_seq_len,
stopping_criteria=stopping_criteria,
logit_processor=logit_processor,
)
if fixed_output_length and output.shape[1] < seq_len:
return torch.cat(
(output, torch.ones(output.shape[0], seq_len-output.shape[1], device=device, dtype=output.dtype) * self.pad_id),
dim=1
)
return output
elif generation_type == "top_p":
logit_warper = GENERATION_TYPES[generation_type](top_p)
elif generation_type == "top_k":
logit_warper = GENERATION_TYPES[generation_type](top_k)
else:
raise ValueError(
f"generation_type has to be one of "
f"{'| ' + ' | '.join(list(GENERATION_TYPES.keys())) + ' |'}."
)
image_latent, image_embs = self._encode_image(image)
if text is None:
text = torch.ones((image.shape[0], 1), device=device, dtype=torch.long) * sot_token_id
was_training = self.training
num_dims = len(text.shape)
if num_dims == 1:
text = text[None, :]
cur_len = text.shape[1]
self.eval()
out = text
while True:
x = out[:, -max_seq_len:]
cur_len = x.shape[1]
logits = self(image, x, image_latent=image_latent, image_embs=image_embs, embed_cls=False)["logits"][:, -1]
mask = (out[:, -1] == eos_token_id) | (out[:, -1] == pad_token_id)
sample = torch.ones((out.shape[0], 1), device=device, dtype=torch.long) * pad_token_id
if mask.all():
if not fixed_output_length:
break
else:
logits = logits[~mask, :]
filtered_logits = logit_processor(x[~mask, :], logits)
filtered_logits = logit_warper(x[~mask, :], filtered_logits)
probs = F.softmax(filtered_logits / temperature, dim=-1)
if (cur_len + 1 == seq_len):
sample[~mask, :] = torch.ones((sum(~mask), 1), device=device, dtype=torch.long) * eos_token_id
else:
sample[~mask, :] = torch.multinomial(probs, 1)
out = torch.cat((out, sample), dim=-1)
cur_len += 1
if stopping_criteria(out, None):
break
if num_dims == 1:
out = out.squeeze(0)
self.train(was_training)
return out
def _generate_beamsearch(
self,
image_inputs,
pad_token_id=None,
eos_token_id=None,
sot_token_id=None,
num_beams=6,
num_beam_groups=3,
min_seq_len=5,
stopping_criteria=None,
logit_processor=None,
logit_warper=None,
):
device = image_inputs.device
batch_size = image_inputs.shape[0]
image_inputs = torch.repeat_interleave(image_inputs, num_beams, dim=0)
image_latent, image_embs = self._encode_image(image_inputs)
input_ids = torch.ones((batch_size * num_beams, 1), device=device, dtype=torch.long)
input_ids = input_ids * sot_token_id
beam_scorer = BeamSearchScorer(
batch_size=batch_size,
num_beams=num_beams,
device=device,
num_beam_groups=num_beam_groups,
)
# instantiate logits processors
logits_processor = (
LogitsProcessorList([MinLengthLogitsProcessor(min_seq_len, eos_token_id=eos_token_id)])
if logit_processor is None
else logit_processor
)
batch_size = len(beam_scorer._beam_hyps)
num_beams = beam_scorer.num_beams
num_beam_groups = beam_scorer.num_beam_groups
num_sub_beams = num_beams // num_beam_groups
batch_beam_size, cur_len = input_ids.shape
beam_indices = None
if num_beams * batch_size != batch_beam_size:
raise ValueError(
f"Batch dimension of `input_ids` should be {num_beams * batch_size}, but is {batch_beam_size}."
)
beam_scores = torch.full((batch_size, num_beams), -1e9, dtype=torch.float, device=device)
# initialise score of first beam of each group with 0 and the rest with 1e-9. This ensures that the beams in
# the same group don't produce same tokens everytime.
beam_scores[:, ::num_sub_beams] = 0
beam_scores = beam_scores.view((batch_size * num_beams,))
while True:
# predicted tokens in cur_len step
current_tokens = torch.zeros(batch_size * num_beams, dtype=input_ids.dtype, device=device)
# indices which will form the beams in the next time step
reordering_indices = torch.zeros(batch_size * num_beams, dtype=torch.long, device=device)
# do one decoder step on all beams of all sentences in batch
model_inputs = prepare_inputs_for_generation(input_ids=input_ids, image_inputs=image_inputs)
outputs = self(
model_inputs['images'],
model_inputs['text'],
embed_cls=False,
image_latent=image_latent,
image_embs=image_embs
)
for beam_group_idx in range(num_beam_groups):
group_start_idx = beam_group_idx * num_sub_beams
group_end_idx = min(group_start_idx + num_sub_beams, num_beams)
group_size = group_end_idx - group_start_idx
# indices of beams of current group among all sentences in batch
batch_group_indices = []
for batch_idx in range(batch_size):
batch_group_indices.extend(
[batch_idx * num_beams + idx for idx in range(group_start_idx, group_end_idx)]
)
group_input_ids = input_ids[batch_group_indices]
# select outputs of beams of currentg group only
next_token_logits = outputs['logits'][batch_group_indices, -1, :]
vocab_size = next_token_logits.shape[-1]
next_token_scores_processed = logits_processor(
group_input_ids, next_token_logits, current_tokens=current_tokens, beam_group_idx=beam_group_idx
)
next_token_scores = next_token_scores_processed + beam_scores[batch_group_indices].unsqueeze(-1)
next_token_scores = next_token_scores.expand_as(next_token_scores_processed)
# reshape for beam search
next_token_scores = next_token_scores.view(batch_size, group_size * vocab_size)
next_token_scores, next_tokens = torch.topk(
next_token_scores, 2 * group_size, dim=1, largest=True, sorted=True
)
next_indices = torch.div(next_tokens, vocab_size, rounding_mode="floor")
next_tokens = next_tokens % vocab_size
# stateless
process_beam_indices = sum(beam_indices, ()) if beam_indices is not None else None
beam_outputs = beam_scorer.process(
group_input_ids,
next_token_scores,
next_tokens,
next_indices,
pad_token_id=pad_token_id,
eos_token_id=eos_token_id,
beam_indices=process_beam_indices,
)
beam_scores[batch_group_indices] = beam_outputs["next_beam_scores"]
beam_next_tokens = beam_outputs["next_beam_tokens"]
beam_idx = beam_outputs["next_beam_indices"]
input_ids[batch_group_indices] = group_input_ids[beam_idx]
group_input_ids = torch.cat([group_input_ids[beam_idx, :], beam_next_tokens.unsqueeze(-1)], dim=-1)
current_tokens[batch_group_indices] = group_input_ids[:, -1]
# (beam_idx // group_size) -> batch_idx
# (beam_idx % group_size) -> offset of idx inside the group
reordering_indices[batch_group_indices] = (
num_beams * torch.div(beam_idx, group_size, rounding_mode="floor") + group_start_idx + (beam_idx % group_size)
)
input_ids = torch.cat([input_ids, current_tokens.unsqueeze(-1)], dim=-1)
# increase cur_len
cur_len = cur_len + 1
if beam_scorer.is_done or stopping_criteria(input_ids, None):
break
final_beam_indices = sum(beam_indices, ()) if beam_indices is not None else None
sequence_outputs = beam_scorer.finalize(
input_ids,
beam_scores,
next_tokens,
next_indices,
pad_token_id=pad_token_id,
eos_token_id=eos_token_id,
max_length=stopping_criteria.max_length,
beam_indices=final_beam_indices,
)
return sequence_outputs['sequences']
def prepare_inputs_for_generation(input_ids, image_inputs, past=None, **kwargs):
if past:
input_ids = input_ids[:, -1].unsqueeze(-1)
attention_mask = kwargs.get("attention_mask", None)
position_ids = kwargs.get("position_ids", None)
if attention_mask is not None and position_ids is None:
# create position_ids on the fly for batch generation
position_ids = attention_mask.long().cumsum(-1) - 1
position_ids.masked_fill_(attention_mask == 0, 1)
else:
position_ids = None
return {
"text": input_ids,
"images": image_inputs,
"past_key_values": past,
"position_ids": position_ids,
"attention_mask": attention_mask,
}
|