Spaces:
Sleeping
Sleeping
File size: 8,880 Bytes
4bb745d 19f4fce 4bb745d f5254ad 4bb745d 170741d 4bb745d f5254ad 4bb745d 19f4fce f5254ad 4bb745d f5254ad 4bb745d 170741d 4bb745d f5254ad 4bb745d 2abc521 4bb745d f5254ad 2abc521 4bb745d 170741d 4bb745d 170741d 4bb745d 2abc521 4bb745d f5254ad 4bb745d 170741d f5254ad 4bb745d 2abc521 4bb745d 19f4fce 12de659 4bb745d f5254ad 4bb745d f5254ad 4bb745d f5254ad 170741d f5254ad 4bb745d f5254ad 4bb745d 170741d 4bb745d 170741d 4bb745d f5254ad 19f4fce 4bb745d 2abc521 19f4fce 4bb745d 13c5bb4 4bb745d 19f4fce 4bb745d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 |
import streamlit as st
import os
import pathlib
from typing import List
# local imports
from models.llms import load_llm, integrated_llms
from models.embeddings import hf_embed_model, openai_embed_model
from models.llamaCustom import LlamaCustom
from models.llamaCustomV2 import LlamaCustomV2
# from models.vector_database import pinecone_vector_store
from utils.chatbox import show_previous_messages, show_chat_input
from utils.util import validate_openai_api_key
# llama_index
from llama_index.core import (
SimpleDirectoryReader,
Document,
VectorStoreIndex,
StorageContext,
Settings,
load_index_from_storage,
)
from llama_index.core.memory import ChatMemoryBuffer
from llama_index.core.base.llms.types import ChatMessage
# huggingface
from huggingface_hub import HfApi
SAVE_DIR = "uploaded_files"
VECTOR_STORE_DIR = "vectorStores"
HF_REPO_ID = "zhtet/RegBotBeta"
# global
# Settings.embed_model = hf_embed_model
Settings.embed_model = openai_embed_model
# huggingface api
hf_api = HfApi()
def init_session_state():
if "llama_messages" not in st.session_state:
st.session_state.llama_messages = [
{"role": "assistant", "content": "How can I help you today?"}
]
# TODO: create a chat history for each different document
if "llama_chat_history" not in st.session_state:
st.session_state.llama_chat_history = [
ChatMessage.from_str(role="assistant", content="How can I help you today?")
]
if "llama_custom" not in st.session_state:
st.session_state.llama_custom = None
if "openai_api_key" not in st.session_state:
st.session_state.openai_api_key = ""
if "replicate_api_token" not in st.session_state:
st.session_state.replicate_api_token = ""
if "hf_token" not in st.session_state:
st.session_state.hf_token = ""
# @st.cache_resource
def get_index(
filename: str,
) -> VectorStoreIndex:
"""This function loads the index from storage if it exists, otherwise it creates a new index from the document."""
try:
index_path = pathlib.Path(f"{VECTOR_STORE_DIR}/{filename.replace('.', '_')}")
if pathlib.Path.exists(index_path):
print("Loading index from storage ...")
storage_context = StorageContext.from_defaults(persist_dir=index_path)
index = load_index_from_storage(storage_context=storage_context)
else:
reader = SimpleDirectoryReader(input_files=[f"{SAVE_DIR}/{filename}"])
docs = reader.load_data(show_progress=True)
index = VectorStoreIndex.from_documents(
documents=docs,
show_progress=True,
)
index.storage_context.persist(
persist_dir=f"vectorStores/{filename.replace('.', '_')}"
)
except Exception as e:
print(f"Error: {e}")
raise e
return index
# def get_pinecone_index(filename: str) -> VectorStoreIndex:
# """Thie function loads the index from Pinecone if it exists, otherwise it creates a new index from the document."""
# reader = SimpleDirectoryReader(input_files=[f"{SAVE_DIR}/{filename}"])
# docs = reader.load_data(show_progress=True)
# storage_context = StorageContext.from_defaults(vector_store=pinecone_vector_store)
# index = VectorStoreIndex.from_documents(
# documents=docs, show_progress=True, storage_context=storage_context
# )
# return index
def get_chroma_index(filename: str) -> VectorStoreIndex:
"""This function loads the index from Chroma if it exists, otherwise it creates a new index from the document."""
pass
def check_api_key(model_name: str, source: str):
if source.startswith("openai"):
if not st.session_state.openai_api_key:
with st.expander("OpenAI API Key", expanded=True):
openai_api_key = st.text_input(
label="Enter your OpenAI API Key:",
type="password",
help="Get your key from https://platform.openai.com/account/api-keys",
value=st.session_state.openai_api_key,
)
if openai_api_key and st.spinner("Validating OpenAI API Key ..."):
result = validate_openai_api_key(openai_api_key)
if result["status"] == "success":
st.session_state.openai_api_key = openai_api_key
st.success(result["message"])
else:
st.error(result["message"])
st.info("You can still select a different model to proceed.")
st.stop()
elif source.startswith("replicate"):
if not st.session_state.replicate_api_token:
with st.expander("Replicate API Token", expanded=True):
replicate_api_token = st.text_input(
label="Enter your Replicate API Token:",
type="password",
help="Get your key from https://replicate.ai/account",
value=st.session_state.replicate_api_token,
)
# TODO: need to validate the token
if replicate_api_token:
st.session_state.replicate_api_token = replicate_api_token
# set the environment variable
os.environ["REPLICATE_API_TOKEN"] = replicate_api_token
elif source.startswith("huggingface"):
if not st.session_state.hf_token:
with st.expander("Hugging Face Token", expanded=True):
hf_token = st.text_input(
label="Enter your Hugging Face Token:",
type="password",
help="Get your key from https://huggingface.co/settings/token",
value=st.session_state.hf_token,
)
if hf_token:
st.session_state.hf_token = hf_token
# set the environment variable
os.environ["HF_TOKEN"] = hf_token
init_session_state()
st.set_page_config(page_title="Llama", page_icon="🦙")
st.header("California Drinking Water Regulation Chatbot - RegBot with LlamaIndex Demo")
tab1, tab2 = st.tabs(["Config", "Chat"])
with tab1:
selected_llm_name = st.selectbox(
label="Select a model:",
options=[f"{key} | {value}" for key, value in integrated_llms.items()],
)
model_name, source = selected_llm_name.split("|")
check_api_key(model_name=model_name.strip(), source=source.strip())
selected_file = st.selectbox(
label="Choose a file to chat with: ", options=os.listdir(SAVE_DIR)
)
if st.button("Clear all api keys"):
st.session_state.openai_api_key = ""
st.session_state.replicate_api_token = ""
st.session_state.hf_token = ""
st.success("All API keys cleared!")
st.rerun()
if st.button("Submit", key="submit", help="Submit the form"):
with st.status("Loading ...", expanded=True) as status:
try:
st.write("Loading Model ...")
llama_llm = load_llm(
model_name=model_name.strip(), source=source.strip()
)
if llama_llm is None:
raise ValueError("Model not found!")
Settings.llm = llama_llm
st.write("Processing Data ...")
index = get_index(selected_file)
# index = get_pinecone_index(selected_file)
st.write("Finishing Up ...")
llama_custom = LlamaCustom(model_name=selected_llm_name, index=index)
# llama_custom = LlamaCustomV2(model_name=selected_llm_name, index=index)
st.session_state.llama_custom = llama_custom
status.update(label="Ready to query!", state="complete", expanded=False)
except Exception as e:
status.update(label="Error!", state="error", expanded=False)
st.error(f"Error: {e}")
st.stop()
with tab2:
messages_container = st.container(height=300)
show_previous_messages(framework="llama", messages_container=messages_container)
show_chat_input(
disabled=False,
framework="llama",
model=st.session_state.llama_custom,
messages_container=messages_container,
)
def clear_history():
messages_container.empty()
st.session_state.llama_messages = [
{"role": "assistant", "content": "How can I help you today?"}
]
st.session_state.llama_chat_history = [
ChatMessage.from_str(role="assistant", content="How can I help you today?")
]
if st.button("Clear Chat History"):
clear_history()
st.rerun()
|