Zwea Htet commited on
Commit
f5254ad
·
1 Parent(s): b1a958d

integrated open source llms

Browse files
Files changed (5) hide show
  1. app.py +7 -16
  2. models/llamaCustom.py +52 -13
  3. models/llms.py +47 -31
  4. pages/llama_custom_demo.py +96 -47
  5. utils/util.py +7 -3
app.py CHANGED
@@ -29,22 +29,13 @@ st.set_page_config(page_title="RegBotBeta", page_icon="📜🤖")
29
  st.title("Welcome to RegBotBeta2.0")
30
  st.header("Powered by `LlamaIndex🦙`, `Langchain🦜🔗 ` and `OpenAI API`")
31
 
32
- # openai_api_key = st.text_input(
33
- # "OpenAI API Key",
34
- # type="password",
35
- # help="Get your API key from https://platform.openai.com/account/api-keys",
36
- # value=st.session_state.openai_api_key,
37
- # )
38
-
39
- # isKeyValid = False
40
- # if openai_api_key:
41
- # resp = validate(openai_api_key)
42
- # if "error" in resp.json():
43
- # st.info("Invalid Token! Try again.")
44
- # else:
45
- # st.info("Success")
46
- # st.session_state.openai_api_key = openai_api_key
47
- # isKeyValid = True
48
 
49
  uploaded_files = st.file_uploader(
50
  "Upload Files",
 
29
  st.title("Welcome to RegBotBeta2.0")
30
  st.header("Powered by `LlamaIndex🦙`, `Langchain🦜🔗 ` and `OpenAI API`")
31
 
32
+
33
+ def init_session_state():
34
+ if "huggingface_token" not in st.session_state:
35
+ st.session_state.huggingface_token = ""
36
+
37
+
38
+ init_session_state()
 
 
 
 
 
 
 
 
 
39
 
40
  uploaded_files = st.file_uploader(
41
  "Upload Files",
models/llamaCustom.py CHANGED
@@ -58,7 +58,43 @@ Reference:
58
  [END_FORMAT]
59
  """
60
 
61
- CONTEXT_PROMPT_TEMPLATE = """
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
62
  The following is a friendly conversation between a user and an AI assistant.
63
  The assistant is talkative and provides lots of specific details from its context.
64
  If the assistant does not know the answer to a question, it truthfully says it
@@ -73,7 +109,7 @@ Include references to the specific sections of the documents that support your a
73
  Answer "don't know" if not present in the document.
74
  """
75
 
76
- CONDENSE_PROMPT_TEMPLATE = """
77
  Given the following conversation between a user and an AI assistant and a follow up question from user,
78
  rephrase the follow up question to be a standalone question.
79
 
@@ -144,21 +180,24 @@ class LlamaCustom:
144
  self.index = index
145
  self.chat_mode = "condense_plus_context"
146
  self.memory = ChatMemoryBuffer.from_defaults()
 
147
 
148
  def get_response(self, query_str: str, chat_history: List[ChatMessage]):
149
  # https://docs.llamaindex.ai/en/stable/module_guides/deploying/chat_engines/
150
- # query_engine = self.index.as_query_engine(
151
- # text_qa_template=text_qa_template, refine_template=refine_template
152
- # )
153
- chat_engine = self.index.as_chat_engine(
154
- chat_mode=self.chat_mode,
155
- memory=self.memory,
156
- context_prompt=CONTEXT_PROMPT_TEMPLATE,
157
- condense_prompt=CONDENSE_PROMPT_TEMPLATE,
158
- # verbose=True,
159
  )
160
- # response = query_engine.query(query_str)
161
- response = chat_engine.chat(message=query_str, chat_history=chat_history)
 
 
 
 
 
 
 
162
 
163
  return str(response)
164
 
 
58
  [END_FORMAT]
59
  """
60
 
61
+ # query engine templates
62
+ QUERY_ENGINE_QA_TEMPLATE = """
63
+ We have provided context information below:
64
+ [CONTEXT]
65
+ {context_str}
66
+ [END_CONTEXT]
67
+ Given this information, please answer the following question:
68
+ [QUESTION]
69
+ {query_str}
70
+ [END_QUESTION]
71
+ """
72
+
73
+ QUERY_ENGINE_REFINE_TEMPLATE = """
74
+ The original query is as follows:
75
+ [QUESTION]
76
+ {query_str}
77
+ [END_QUESTION]
78
+
79
+ We have providec an existing answer:
80
+ [ANSWER]
81
+ {existing_answer}
82
+ [END_ANSWER]
83
+
84
+ We have the opportunity to refine the existing answer (only if needed) with some more
85
+ context below.
86
+ [CONTEXT]
87
+ {context_msg}
88
+ [END_CONTEXT]
89
+
90
+ Given the new context, refine the original answer to include more details like references \
91
+ to the specific sections of the documents that support your answer.
92
+
93
+ Refined Answer:
94
+ """
95
+
96
+
97
+ CHAT_ENGINE_CONTEXT_PROMPT_TEMPLATE = """
98
  The following is a friendly conversation between a user and an AI assistant.
99
  The assistant is talkative and provides lots of specific details from its context.
100
  If the assistant does not know the answer to a question, it truthfully says it
 
109
  Answer "don't know" if not present in the document.
110
  """
111
 
112
+ CHAT_ENGINE_CONDENSE_PROMPT_TEMPLATE = """
113
  Given the following conversation between a user and an AI assistant and a follow up question from user,
114
  rephrase the follow up question to be a standalone question.
115
 
 
180
  self.index = index
181
  self.chat_mode = "condense_plus_context"
182
  self.memory = ChatMemoryBuffer.from_defaults()
183
+ self.verbose = True
184
 
185
  def get_response(self, query_str: str, chat_history: List[ChatMessage]):
186
  # https://docs.llamaindex.ai/en/stable/module_guides/deploying/chat_engines/
187
+ query_engine = self.index.as_query_engine(
188
+ text_qa_template=PromptTemplate(QUERY_ENGINE_QA_TEMPLATE),
189
+ refine_template=PromptTemplate(QUERY_ENGINE_REFINE_TEMPLATE),
190
+ verbose=self.verbose,
 
 
 
 
 
191
  )
192
+ # chat_engine = self.index.as_chat_engine(
193
+ # chat_mode=self.chat_mode,
194
+ # memory=self.memory,
195
+ # context_prompt=CHAT_ENGINE_CONTEXT_PROMPT_TEMPLATE,
196
+ # condense_prompt=CHAT_ENGINE_CONDENSE_PROMPT_TEMPLATE,
197
+ # # verbose=True,
198
+ # )
199
+ response = query_engine.query(query_str)
200
+ # response = chat_engine.chat(message=query_str, chat_history=chat_history)
201
 
202
  return str(response)
203
 
models/llms.py CHANGED
@@ -1,16 +1,13 @@
1
- from llama_index.llms.huggingface import HuggingFaceLLM
2
  from llama_index.llms.openai import OpenAI
3
- # from llama_index.llms.replicate import Replicate
 
4
  from dotenv import load_dotenv
5
  import os
 
6
 
7
  load_dotenv()
8
 
9
- # llm_mixtral_8x7b = HuggingFaceInferenceAPI(
10
- # model_name="mistralai/Mixtral-8x7B-Instruct-v0.1",
11
- # token=os.getenv("HUGGINGFACE_API_TOKEN"),
12
- # )
13
-
14
  # download the model from the Hugging Face Hub and run it locally
15
  # llm_mixtral_8x7b = HuggingFaceLLM(model_name="mistralai/Mixtral-8x7B-Instruct-v0.1")
16
 
@@ -19,27 +16,46 @@ load_dotenv()
19
  # token=os.getenv("HUGGINGFACE_API_TOKEN"),
20
  # )
21
 
22
- # llm_bloomz_560m = HuggingFaceInferenceAPI(
23
- # model_name="bigscience/bloomz-560m",
24
- # token=os.getenv("HUGGINGFACE_API_TOKEN"),
25
- # )
26
- llm_bloomz_560m = HuggingFaceLLM(model_name="bigscience/bloomz-560m")
27
-
28
- # llm_gpt_3_5_turbo = OpenAI(
29
- # api_key=os.getenv("OPENAI_API_KEY"),
30
- # )
31
-
32
- llm_gpt_3_5_turbo_0125 = OpenAI(
33
- model="gpt-3.5-turbo-0125",
34
- api_key=os.getenv("OPENAI_API_KEY"),
35
- )
36
-
37
- # llm_gpt_4_0125 = OpenAI(
38
- # model="gpt-4-0125-preview",
39
- # api_key=os.getenv("OPENAI_API_KEY"),
40
- # )
41
-
42
- # llm_llama_13b_v2_replicate = Replicate(
43
- # model="meta/llama-2-13b-chat",
44
- # prompt_key=os.getenv("REPLICATE_API_KEY"),
45
- # )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from llama_index.llms.huggingface import HuggingFaceLLM, HuggingFaceInferenceAPI
2
  from llama_index.llms.openai import OpenAI
3
+ from llama_index.llms.replicate import Replicate
4
+
5
  from dotenv import load_dotenv
6
  import os
7
+ import streamlit as st
8
 
9
  load_dotenv()
10
 
 
 
 
 
 
11
  # download the model from the Hugging Face Hub and run it locally
12
  # llm_mixtral_8x7b = HuggingFaceLLM(model_name="mistralai/Mixtral-8x7B-Instruct-v0.1")
13
 
 
16
  # token=os.getenv("HUGGINGFACE_API_TOKEN"),
17
  # )
18
 
19
+ # dict = {"source": "model_name"}
20
+ integrated_llms = {
21
+ "gpt-3.5-turbo-0125": "openai",
22
+ "meta/llama-2-13b-chat": "replicate",
23
+ "mistralai/Mistral-7B-Instruct-v0.2": "huggingface",
24
+ # "mistralai/Mixtral-8x7B-v0.1": "huggingface", # 93 GB model
25
+ # "meta-llama/Meta-Llama-3-8B": "huggingface", # too large >10G for llama index hf interference to load
26
+ }
27
+
28
+
29
+ def load_llm(model_name: str, source: str = "huggingface"):
30
+ print("model_name: ", model_name, "source: ", source)
31
+ if integrated_llms.get(model_name) is None:
32
+ return None
33
+ try:
34
+ if source.startswith("openai"):
35
+ llm_gpt_3_5_turbo_0125 = OpenAI(
36
+ model=model_name,
37
+ api_key=st.session_state.openai_api_key,
38
+ )
39
+
40
+ return llm_gpt_3_5_turbo_0125
41
+
42
+ elif source.startswith("replicate"):
43
+ llm_llama_13b_v2_replicate = Replicate(
44
+ model=model_name,
45
+ is_chat_model=True,
46
+ additional_kwargs={"max_new_tokens": 250},
47
+ prompt_key=st.session_state.replicate_api_token,
48
+ )
49
+
50
+ return llm_llama_13b_v2_replicate
51
+
52
+ elif source.startswith("huggingface"):
53
+ llm_mixtral_8x7b = HuggingFaceInferenceAPI(
54
+ model_name=model_name,
55
+ token=st.session_state.hf_token,
56
+ )
57
+
58
+ return llm_mixtral_8x7b
59
+
60
+ except Exception as e:
61
+ print(e)
pages/llama_custom_demo.py CHANGED
@@ -1,18 +1,16 @@
1
- import random
2
- import time
3
  import streamlit as st
4
  import os
5
  import pathlib
6
  from typing import List
7
- from models.llms import (
8
- llm_bloomz_560m,
9
- llm_gpt_3_5_turbo_0125,
10
- )
11
  from models.embeddings import hf_embed_model, openai_embed_model
12
  from models.llamaCustom import LlamaCustom
13
-
14
- # from models.llamaCustom import LlamaCustom
15
  from utils.chatbox import show_previous_messages, show_chat_input
 
 
 
16
  from llama_index.core import (
17
  SimpleDirectoryReader,
18
  Document,
@@ -24,21 +22,18 @@ from llama_index.core import (
24
  from llama_index.core.memory import ChatMemoryBuffer
25
  from llama_index.core.base.llms.types import ChatMessage
26
 
 
 
 
27
  SAVE_DIR = "uploaded_files"
28
  VECTOR_STORE_DIR = "vectorStores"
 
29
 
30
  # global
31
  Settings.embed_model = hf_embed_model
32
 
33
- llama_llms = {
34
- "bigscience/bloomz-560m": llm_bloomz_560m,
35
- # "mistral/mixtral": llm_mixtral_8x7b,
36
- # "meta-llama/Llama-2-7b-chat-hf": llm_llama_2_7b_chat,
37
- # "openai/gpt-3.5-turbo": llm_gpt_3_5_turbo,
38
- "openai/gpt-3.5-turbo-0125": llm_gpt_3_5_turbo_0125,
39
- # "openai/gpt-4-0125-preview": llm_gpt_4_0125,
40
- # "meta/llama-2-13b-chat": llm_llama_13b_v2_replicate,
41
- }
42
 
43
 
44
  def init_session_state():
@@ -56,6 +51,15 @@ def init_session_state():
56
  if "llama_custom" not in st.session_state:
57
  st.session_state.llama_custom = None
58
 
 
 
 
 
 
 
 
 
 
59
 
60
  # @st.cache_resource
61
  def index_docs(
@@ -68,9 +72,6 @@ def index_docs(
68
  storage_context = StorageContext.from_defaults(persist_dir=index_path)
69
  index = load_index_from_storage(storage_context=storage_context)
70
 
71
- # test the index
72
- index.as_query_engine().query("What is the capital of France?")
73
-
74
  else:
75
  reader = SimpleDirectoryReader(input_files=[f"{SAVE_DIR}/{filename}"])
76
  docs = reader.load_data(show_progress=True)
@@ -84,12 +85,62 @@ def index_docs(
84
 
85
  except Exception as e:
86
  print(f"Error: {e}")
87
- index = None
88
  return index
89
 
90
 
91
- def load_llm(model_name: str):
92
- return llama_llms[model_name]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
93
 
94
 
95
  init_session_state()
@@ -101,43 +152,41 @@ st.header("Llama Index with Custom LLM Demo")
101
  tab1, tab2 = st.tabs(["Config", "Chat"])
102
 
103
  with tab1:
104
- with st.form(key="llama_form"):
105
- selected_llm_name = st.selectbox(
106
- label="Select a model:", options=llama_llms.keys()
107
- )
108
-
109
- if selected_llm_name.startswith("openai"):
110
- # ask for the api key
111
- if st.secrets.get("OPENAI_API_KEY") is None:
112
- # st.stop()
113
- st.info("OpenAI API Key not found in secrets. Please enter it below.")
114
- st.secrets["OPENAI_API_KEY"] = st.text_input(
115
- "OpenAI API Key",
116
- type="password",
117
- help="Get your API key from https://platform.openai.com/account/api-keys",
118
- )
119
 
120
- selected_file = st.selectbox(
121
- label="Choose a file to chat with: ", options=os.listdir(SAVE_DIR)
122
- )
123
 
124
- if st.form_submit_button(label="Submit"):
125
- with st.status("Loading ...", expanded=True) as status:
 
 
 
 
 
126
  st.write("Loading Model ...")
127
- llama_llm = load_llm(selected_llm_name)
 
 
 
 
128
  Settings.llm = llama_llm
129
 
130
  st.write("Processing Data ...")
131
  index = index_docs(selected_file)
132
- if index is None:
133
- st.error("Failed to index the documents.")
134
- st.stop()
135
 
136
  st.write("Finishing Up ...")
137
  llama_custom = LlamaCustom(model_name=selected_llm_name, index=index)
138
  st.session_state.llama_custom = llama_custom
139
 
140
  status.update(label="Ready to query!", state="complete", expanded=False)
 
 
 
 
141
 
142
  with tab2:
143
  messages_container = st.container(height=300)
 
 
 
1
  import streamlit as st
2
  import os
3
  import pathlib
4
  from typing import List
5
+
6
+ # local imports
7
+ from models.llms import load_llm, integrated_llms
 
8
  from models.embeddings import hf_embed_model, openai_embed_model
9
  from models.llamaCustom import LlamaCustom
 
 
10
  from utils.chatbox import show_previous_messages, show_chat_input
11
+ from utils.util import validate_openai_api_key
12
+
13
+ # llama_index
14
  from llama_index.core import (
15
  SimpleDirectoryReader,
16
  Document,
 
22
  from llama_index.core.memory import ChatMemoryBuffer
23
  from llama_index.core.base.llms.types import ChatMessage
24
 
25
+ # huggingface
26
+ from huggingface_hub import HfApi
27
+
28
  SAVE_DIR = "uploaded_files"
29
  VECTOR_STORE_DIR = "vectorStores"
30
+ HF_REPO_ID = "zhtet/RegBotBeta"
31
 
32
  # global
33
  Settings.embed_model = hf_embed_model
34
 
35
+ # huggingface api
36
+ hf_api = HfApi()
 
 
 
 
 
 
 
37
 
38
 
39
  def init_session_state():
 
51
  if "llama_custom" not in st.session_state:
52
  st.session_state.llama_custom = None
53
 
54
+ if "openai_api_key" not in st.session_state:
55
+ st.session_state.openai_api_key = ""
56
+
57
+ if "replicate_api_token" not in st.session_state:
58
+ st.session_state.replicate_api_token = ""
59
+
60
+ if "hf_token" not in st.session_state:
61
+ st.session_state.hf_token = ""
62
+
63
 
64
  # @st.cache_resource
65
  def index_docs(
 
72
  storage_context = StorageContext.from_defaults(persist_dir=index_path)
73
  index = load_index_from_storage(storage_context=storage_context)
74
 
 
 
 
75
  else:
76
  reader = SimpleDirectoryReader(input_files=[f"{SAVE_DIR}/{filename}"])
77
  docs = reader.load_data(show_progress=True)
 
85
 
86
  except Exception as e:
87
  print(f"Error: {e}")
88
+ raise e
89
  return index
90
 
91
 
92
+ def check_api_key(model_name: str, source: str):
93
+ if source.startswith("openai"):
94
+ if not st.session_state.openai_api_key:
95
+ with st.expander("OpenAI API Key", expanded=True):
96
+ openai_api_key = st.text_input(
97
+ label="Enter your OpenAI API Key:",
98
+ type="password",
99
+ help="Get your key from https://platform.openai.com/account/api-keys",
100
+ value=st.session_state.openai_api_key,
101
+ )
102
+
103
+ if openai_api_key and st.spinner("Validating OpenAI API Key ..."):
104
+ result = validate_openai_api_key(openai_api_key)
105
+ if result["status"] == "success":
106
+ st.session_state.openai_api_key = openai_api_key
107
+ st.success(result["message"])
108
+ else:
109
+ st.error(result["message"])
110
+ st.info("You can still select a different model to proceed.")
111
+ st.stop()
112
+
113
+ elif source.startswith("replicate"):
114
+ if not st.session_state.replicate_api_token:
115
+ with st.expander("Replicate API Token", expanded=True):
116
+ replicate_api_token = st.text_input(
117
+ label="Enter your Replicate API Token:",
118
+ type="password",
119
+ help="Get your key from https://replicate.ai/account",
120
+ value=st.session_state.replicate_api_token,
121
+ )
122
+
123
+ # TODO: need to validate the token
124
+
125
+ if replicate_api_token:
126
+ st.session_state.replicate_api_token = replicate_api_token
127
+ # set the environment variable
128
+ os.environ["REPLICATE_API_TOKEN"] = replicate_api_token
129
+
130
+ elif source.startswith("huggingface"):
131
+ if not st.session_state.hf_token:
132
+ with st.expander("Hugging Face Token", expanded=True):
133
+ hf_token = st.text_input(
134
+ label="Enter your Hugging Face Token:",
135
+ type="password",
136
+ help="Get your key from https://huggingface.co/settings/token",
137
+ value=st.session_state.hf_token,
138
+ )
139
+
140
+ if hf_token:
141
+ st.session_state.hf_token = hf_token
142
+ # set the environment variable
143
+ os.environ["HF_TOKEN"] = hf_token
144
 
145
 
146
  init_session_state()
 
152
  tab1, tab2 = st.tabs(["Config", "Chat"])
153
 
154
  with tab1:
155
+ selected_llm_name = st.selectbox(
156
+ label="Select a model:",
157
+ options=[f"{key} | {value}" for key, value in integrated_llms.items()],
158
+ )
159
+ model_name, source = selected_llm_name.split("|")
 
 
 
 
 
 
 
 
 
 
160
 
161
+ check_api_key(model_name=model_name.strip(), source=source.strip())
 
 
162
 
163
+ selected_file = st.selectbox(
164
+ label="Choose a file to chat with: ", options=os.listdir(SAVE_DIR)
165
+ )
166
+
167
+ if st.button("Submit", key="submit", help="Submit the form"):
168
+ with st.status("Loading ...", expanded=True) as status:
169
+ try:
170
  st.write("Loading Model ...")
171
+ llama_llm = load_llm(
172
+ model_name=model_name.strip(), source=source.strip()
173
+ )
174
+ if llama_llm is None:
175
+ raise ValueError("Model not found!")
176
  Settings.llm = llama_llm
177
 
178
  st.write("Processing Data ...")
179
  index = index_docs(selected_file)
 
 
 
180
 
181
  st.write("Finishing Up ...")
182
  llama_custom = LlamaCustom(model_name=selected_llm_name, index=index)
183
  st.session_state.llama_custom = llama_custom
184
 
185
  status.update(label="Ready to query!", state="complete", expanded=False)
186
+ except Exception as e:
187
+ status.update(label="Error!", state="error", expanded=False)
188
+ st.error(f"Error: {e}")
189
+ st.stop()
190
 
191
  with tab2:
192
  messages_container = st.container(height=300)
utils/util.py CHANGED
@@ -1,7 +1,7 @@
1
  import requests
 
2
 
3
-
4
- def validate(token: str):
5
  api_endpoint = "https://api.openai.com/v1/chat/completions"
6
  api_key = token
7
 
@@ -12,4 +12,8 @@ def validate(token: str):
12
  data = {"model": "gpt-3.5-turbo", "messages": messages}
13
 
14
  response = requests.post(api_endpoint, json=data, headers=headers)
15
- return response
 
 
 
 
 
1
  import requests
2
+ from typing import Dict
3
 
4
+ def validate_openai_api_key(token: str) -> Dict[str, str]:
 
5
  api_endpoint = "https://api.openai.com/v1/chat/completions"
6
  api_key = token
7
 
 
12
  data = {"model": "gpt-3.5-turbo", "messages": messages}
13
 
14
  response = requests.post(api_endpoint, json=data, headers=headers)
15
+
16
+ if response.status_code == 200:
17
+ return {"status": "success", "message": "API key is valid"}
18
+ else:
19
+ return {"status": "error", "message": response.json()["error"]["message"]}