File size: 4,286 Bytes
ce8ed8a
a7e9858
 
 
 
d1459de
a7e9858
 
 
0bdc732
a7e9858
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0bdc732
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
02c5578
 
0bdc732
 
 
 
 
 
 
 
 
 
a7e9858
5ade6c6
0bdc732
 
 
 
 
a83aa63
0bdc732
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
821622e
0bdc732
 
 
ce8ed8a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
import streamlit as st
from llama_index.core import StorageContext, load_index_from_storage, VectorStoreIndex, SimpleDirectoryReader, ChatPromptTemplate
from llama_index.llms.huggingface import HuggingFaceInferenceAPI
from dotenv import load_dotenv
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
from llama_index.core.memory import ChatMemoryBuffer
from llama_index.core import Settings
import os
import base64
import datetime


# Load environment variables
load_dotenv() 

# Configure the Llama index settings
Settings.llm = HuggingFaceInferenceAPI(
    model_name="meta-llama/Meta-Llama-3-8B-Instruct",
    tokenizer_name="meta-llama/Meta-Llama-3-8B-Instruct",
    context_window=3900,
    token=os.getenv("HF_TOKEN"),
    max_new_tokens=1024,
    generate_kwargs={"temperature": 0.1},
)
Settings.embed_model = HuggingFaceEmbedding(
    model_name="BAAI/bge-large-en-v1.5"
)

# Declare directory's for data and persistent storage
PERSIST_DIR = "./db"
DATA_DIR = "data"

# Ensure data directory exists
os.makedirs(DATA_DIR, exist_ok=True)
os.makedirs(PERSIST_DIR, exist_ok=True)


# Here, a memory token limit of 1500 is set
memory = ChatMemoryBuffer.from_defaults(token_limit=1500)


def displayPDF(file):
    with open(file, "rb") as f:
        base64_pdf = base64.b64encode(f.read()).decode('utf-8')
    pdf_display = f'<iframe src="data:application/pdf;base64,{base64_pdf}" width="100%" height="600" type="application/pdf"></iframe>'
    st.markdown(pdf_display, unsafe_allow_html=True)


def data_ingestion():
    documents = SimpleDirectoryReader(DATA_DIR).load_data()
    storage_context = StorageContext.from_defaults()
    index = VectorStoreIndex.from_documents(documents)
    index.storage_context.persist(persist_dir=PERSIST_DIR)


def handle_query(query):
    storage_context = StorageContext.from_defaults(persist_dir=PERSIST_DIR)
    index = load_index_from_storage(storage_context)
    chat_text_qa_msgs = [
        (
            "user",
            """You are a Q&A assistant. Created by Abraham Paul [linkedin](https://www.linkedin.com/in/abraham-paul-16317a235/) a Software / AI Engineer. 
            Your primary objective is to provide accurate and helpful answers based on the instructions and context provided. 
            If a question falls outside the given context or scope, kindly guide the user to ask questions that align with the provided context.
            Context:
            {context_str}
            Question:
            {query_str}
            """
        )
    ]
    text_qa_template = ChatPromptTemplate.from_messages(chat_text_qa_msgs)
    # query_engine = index.as_query_engine(text_qa_template=text_qa_template, memory=memory)
    query_engine = index.as_query_engine(text_qa_template=text_qa_template)
    answer = query_engine.query(query)
    
    if hasattr(answer, 'response'):
        return answer.response
    elif isinstance(answer, dict) and 'response' in answer:
        return answer['response']
    else:
        return "Sorry, I couldn't find an answer."


# Streamlit app initialization
st.title("Get insights from your data!πŸ‘‡")

if 'messages' not in st.session_state:
    st.session_state.messages = [{'role': 'assistant', "content": 'Upload your pdf doc and ask me anything about it, Lets chat!!'}]

with st.sidebar:
    st.markdown("# Chat with your Doc")
    st.markdown("**Created by [Abraham](https://www.linkedin.com/in/abraham-paul-16317a235/)**")
    st.title(':blue[Get Started]:')
    uploaded_file = st.file_uploader("Upload your PDF and Click Submit")
    if st.button("Submit"):
        with st.spinner("Processing..."):
            filepath = "data/saved_pdf.pdf"
            with open(filepath, "wb") as f:
                f.write(uploaded_file.getbuffer())
            data_ingestion()  # Process PDF every time new file is uploaded
            st.success("Done")

user_prompt = st.chat_input("Ask me anything from the uploaded document:")

if user_prompt:
    st.session_state.messages.append({'role': 'user', "content": user_prompt})
    response = handle_query(user_prompt)
    st.session_state.messages.append({'role': 'assistant', "content": response})

for message in st.session_state.messages:
    with st.chat_message(message['role']):
        st.write(message['content'])