Spaces:
Sleeping
Sleeping
zeusmadeit
commited on
Commit
β’
0bdc732
1
Parent(s):
821622e
added the chat interface and chat-memory
Browse files
app.py
CHANGED
@@ -3,9 +3,11 @@ from llama_index.core import StorageContext, load_index_from_storage, VectorStor
|
|
3 |
from llama_index.llms.huggingface import HuggingFaceInferenceAPI
|
4 |
from dotenv import load_dotenv
|
5 |
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
|
|
|
6 |
from llama_index.core import Settings
|
7 |
import os
|
8 |
import base64
|
|
|
9 |
|
10 |
|
11 |
# Load environment variables
|
@@ -32,8 +34,80 @@ DATA_DIR = "data"
|
|
32 |
os.makedirs(DATA_DIR, exist_ok=True)
|
33 |
os.makedirs(PERSIST_DIR, exist_ok=True)
|
34 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
# Streamlit app initialization
|
36 |
-
st.title("
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
|
38 |
-
|
|
|
|
|
39 |
|
|
|
3 |
from llama_index.llms.huggingface import HuggingFaceInferenceAPI
|
4 |
from dotenv import load_dotenv
|
5 |
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
|
6 |
+
from llama_index.memory import ChatMemoryBuffer
|
7 |
from llama_index.core import Settings
|
8 |
import os
|
9 |
import base64
|
10 |
+
import datetime
|
11 |
|
12 |
|
13 |
# Load environment variables
|
|
|
34 |
os.makedirs(DATA_DIR, exist_ok=True)
|
35 |
os.makedirs(PERSIST_DIR, exist_ok=True)
|
36 |
|
37 |
+
|
38 |
+
# Here, a memory token limit of 1500 is set
|
39 |
+
memory = ChatMemoryBuffer.from_defaults(token_limit=1500)
|
40 |
+
|
41 |
+
|
42 |
+
def displayPDF(file):
|
43 |
+
with open(file, "rb") as f:
|
44 |
+
base64_pdf = base64.b64encode(f.read()).decode('utf-8')
|
45 |
+
pdf_display = f'<iframe src="data:application/pdf;base64,{base64_pdf}" width="100%" height="600" type="application/pdf"></iframe>'
|
46 |
+
st.markdown(pdf_display, unsafe_allow_html=True)
|
47 |
+
|
48 |
+
|
49 |
+
def data_ingestion():
|
50 |
+
documents = SimpleDirectoryReader(DATA_DIR).load_data()
|
51 |
+
storage_context = StorageContext.from_defaults()
|
52 |
+
index = VectorStoreIndex.from_documents(documents)
|
53 |
+
index.storage_context.persist(persist_dir=PERSIST_DIR)
|
54 |
+
|
55 |
+
|
56 |
+
def handle_query(query):
|
57 |
+
storage_context = StorageContext.from_defaults(persist_dir=PERSIST_DIR)
|
58 |
+
index = load_index_from_storage(storage_context)
|
59 |
+
chat_text_qa_msgs = [
|
60 |
+
(
|
61 |
+
"user",
|
62 |
+
"""You are a Q&A assistant. Created by Abraham Paul [linkedin](https://www.linkedin.com/in/abraham-paul-16317a235/) a Software / AI Engineer.
|
63 |
+
Your primary objective is to provide accurate and helpful answers based on the instructions and context provided.
|
64 |
+
If a question falls outside the given context or scope, kindly guide the user to ask questions that align with the provided context.
|
65 |
+
Context:
|
66 |
+
{context_str}
|
67 |
+
Question:
|
68 |
+
{query_str}
|
69 |
+
"""
|
70 |
+
)
|
71 |
+
]
|
72 |
+
text_qa_template = ChatPromptTemplate.from_messages(chat_text_qa_msgs)
|
73 |
+
query_engine = index.as_query_engine(text_qa_template=text_qa_template, memory=memory)
|
74 |
+
answer = query_engine.query(query)
|
75 |
+
|
76 |
+
if hasattr(answer, 'response'):
|
77 |
+
return answer.response
|
78 |
+
elif isinstance(answer, dict) and 'response' in answer:
|
79 |
+
return answer['response']
|
80 |
+
else:
|
81 |
+
return "Sorry, I couldn't find an answer."
|
82 |
+
|
83 |
+
|
84 |
# Streamlit app initialization
|
85 |
+
st.title("PDF Chatbot - with your doc")
|
86 |
+
st.markdown("Get insights from your data β just ask!π")
|
87 |
+
|
88 |
+
if 'messages' not in st.session_state:
|
89 |
+
st.session_state.messages = [{'role': 'assistant', "content": 'Upload your pdf doc and ask me anything about it, Lets chat!!'}]
|
90 |
+
|
91 |
+
with st.sidebar:
|
92 |
+
st.markdown("**Created by [Abraham](https://www.linkedin.com/in/abraham-paul-16317a235/)**")
|
93 |
+
st.title(':blue[Get Started]:')
|
94 |
+
uploaded_file = st.file_uploader("Upload your PDF and Click Submit")
|
95 |
+
if st.button("Submit"):
|
96 |
+
with st.spinner("Processing..."):
|
97 |
+
filepath = "data/saved_pdf.pdf"
|
98 |
+
with open(filepath, "wb") as f:
|
99 |
+
f.write(uploaded_file.getbuffer())
|
100 |
+
data_ingestion() # Process PDF every time new file is uploaded
|
101 |
+
st.success("Done")
|
102 |
+
|
103 |
+
user_prompt = st.chat_input("Ask me anything from the uploaded document:")
|
104 |
+
|
105 |
+
if user_prompt:
|
106 |
+
st.session_state.messages.append({'role': 'user', "content": user_prompt})
|
107 |
+
response = handle_query(user_prompt)
|
108 |
+
st.session_state.messages.append({'role': 'assistant', "content": response})
|
109 |
|
110 |
+
for message in st.session_state.messages:
|
111 |
+
with st.chat_message(message['role']):
|
112 |
+
st.write(message['content'])
|
113 |
|