Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
#1
by
linoyts
HF Staff
- opened
app.py
CHANGED
|
@@ -4,8 +4,9 @@ import random
|
|
| 4 |
import torch
|
| 5 |
import spaces
|
| 6 |
import os
|
|
|
|
| 7 |
|
| 8 |
-
from PIL import Image
|
| 9 |
import torch
|
| 10 |
import math
|
| 11 |
|
|
@@ -138,6 +139,130 @@ Return only the rewritten instruction text directly, without JSON formatting or
|
|
| 138 |
|
| 139 |
return polish_prompt_hf(full_prompt, SYSTEM_PROMPT)
|
| 140 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 141 |
|
| 142 |
# --- Model Loading ---
|
| 143 |
dtype = torch.bfloat16
|
|
@@ -146,18 +271,57 @@ pipe = QwenImageEditPipeline.from_pretrained("Qwen/Qwen-Image-Edit", torch_dtype
|
|
| 146 |
pipe.transformer.__class__ = QwenImageTransformer2DModel
|
| 147 |
pipe.transformer.set_attn_processor(QwenDoubleStreamAttnProcessorFA3())
|
| 148 |
|
| 149 |
-
|
| 150 |
# --- Ahead-of-time compilation ---
|
| 151 |
optimize_pipeline_(pipe, image=Image.new("RGB", (1024, 1024)), prompt="prompt")
|
| 152 |
|
| 153 |
# --- UI Constants and Helpers ---
|
| 154 |
MAX_SEED = np.iinfo(np.int32).max
|
| 155 |
|
| 156 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 157 |
@spaces.GPU(duration=120)
|
| 158 |
def infer(
|
| 159 |
image,
|
| 160 |
prompt,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 161 |
seed=42,
|
| 162 |
randomize_seed=False,
|
| 163 |
true_guidance_scale=4.0,
|
|
@@ -166,7 +330,7 @@ def infer(
|
|
| 166 |
progress=gr.Progress(track_tqdm=True),
|
| 167 |
):
|
| 168 |
"""
|
| 169 |
-
Generates an image using the
|
| 170 |
"""
|
| 171 |
# Hardcode the negative prompt as requested
|
| 172 |
negative_prompt = " "
|
|
@@ -177,7 +341,7 @@ def infer(
|
|
| 177 |
# Set up the generator for reproducibility
|
| 178 |
generator = torch.Generator(device=device).manual_seed(seed)
|
| 179 |
|
| 180 |
-
print(f"
|
| 181 |
print(f"Negative Prompt: '{negative_prompt}'")
|
| 182 |
print(f"Seed: {seed}, Steps: {num_inference_steps}")
|
| 183 |
|
|
@@ -185,9 +349,27 @@ def infer(
|
|
| 185 |
prompt = polish_prompt(prompt, image)
|
| 186 |
print(f"Rewritten Prompt: {prompt}")
|
| 187 |
|
| 188 |
-
#
|
| 189 |
-
|
| 190 |
-
image,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 191 |
prompt=prompt,
|
| 192 |
negative_prompt=negative_prompt,
|
| 193 |
num_inference_steps=num_inference_steps,
|
|
@@ -195,7 +377,7 @@ def infer(
|
|
| 195 |
true_cfg_scale=true_guidance_scale,
|
| 196 |
).images[0]
|
| 197 |
|
| 198 |
-
return
|
| 199 |
|
| 200 |
# --- Examples and UI Layout ---
|
| 201 |
examples = []
|
|
@@ -206,6 +388,12 @@ css = """
|
|
| 206 |
max-width: 1024px;
|
| 207 |
}
|
| 208 |
#edit_text{margin-top: -62px !important}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 209 |
"""
|
| 210 |
|
| 211 |
with gr.Blocks(css=css) as demo:
|
|
@@ -216,59 +404,174 @@ with gr.Blocks(css=css) as demo:
|
|
| 216 |
</div>
|
| 217 |
""")
|
| 218 |
gr.Markdown("""
|
|
|
|
|
|
|
|
|
|
|
|
|
| 219 |
[Learn more](https://github.com/QwenLM/Qwen-Image) about the Qwen-Image series.
|
| 220 |
-
Try on [Qwen Chat](https://chat.qwen.ai/), or [download model](https://huggingface.co/Qwen/Qwen-Image-Edit) to run locally
|
| 221 |
""")
|
|
|
|
| 222 |
with gr.Row():
|
| 223 |
with gr.Column():
|
| 224 |
-
input_image = gr.Image(label="Input Image",
|
|
|
|
| 225 |
prompt = gr.Text(
|
| 226 |
label="Prompt",
|
| 227 |
-
|
| 228 |
-
placeholder="describe the edit instruction",
|
| 229 |
container=False,
|
| 230 |
)
|
| 231 |
-
|
| 232 |
-
|
| 233 |
-
|
| 234 |
-
|
| 235 |
-
|
| 236 |
-
|
| 237 |
-
|
| 238 |
-
|
| 239 |
-
|
| 240 |
-
|
| 241 |
-
|
| 242 |
-
|
| 243 |
-
|
| 244 |
-
|
| 245 |
-
|
| 246 |
-
|
| 247 |
-
|
| 248 |
-
|
| 249 |
-
|
| 250 |
-
|
| 251 |
-
|
| 252 |
-
|
| 253 |
-
|
| 254 |
-
|
| 255 |
-
|
| 256 |
-
|
| 257 |
-
|
| 258 |
-
|
| 259 |
-
|
| 260 |
-
|
| 261 |
-
|
| 262 |
-
|
| 263 |
-
|
| 264 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 265 |
|
| 266 |
-
|
| 267 |
-
|
| 268 |
-
|
| 269 |
-
|
| 270 |
-
|
| 271 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 272 |
|
| 273 |
gr.on(
|
| 274 |
triggers=[run_button.click, prompt.submit],
|
|
@@ -276,7 +579,16 @@ with gr.Blocks(css=css) as demo:
|
|
| 276 |
inputs=[
|
| 277 |
input_image,
|
| 278 |
prompt,
|
| 279 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 280 |
seed,
|
| 281 |
randomize_seed,
|
| 282 |
true_guidance_scale,
|
|
|
|
| 4 |
import torch
|
| 5 |
import spaces
|
| 6 |
import os
|
| 7 |
+
import json
|
| 8 |
|
| 9 |
+
from PIL import Image, ImageDraw
|
| 10 |
import torch
|
| 11 |
import math
|
| 12 |
|
|
|
|
| 139 |
|
| 140 |
return polish_prompt_hf(full_prompt, SYSTEM_PROMPT)
|
| 141 |
|
| 142 |
+
# --- Outpainting Functions ---
|
| 143 |
+
def can_expand(source_width, source_height, target_width, target_height, alignment):
|
| 144 |
+
"""Checks if the image can be expanded based on the alignment."""
|
| 145 |
+
if alignment in ("Left", "Right") and source_width >= target_width:
|
| 146 |
+
return False
|
| 147 |
+
if alignment in ("Top", "Bottom") and source_height >= target_height:
|
| 148 |
+
return False
|
| 149 |
+
return True
|
| 150 |
+
|
| 151 |
+
def prepare_image_and_mask(image, width, height, overlap_percentage, resize_option, custom_resize_percentage, alignment, overlap_left, overlap_right, overlap_top, overlap_bottom):
|
| 152 |
+
"""Prepares the image with white margins and creates a mask for outpainting."""
|
| 153 |
+
target_size = (width, height)
|
| 154 |
+
|
| 155 |
+
# Calculate the scaling factor to fit the image within the target size
|
| 156 |
+
scale_factor = min(target_size[0] / image.width, target_size[1] / image.height)
|
| 157 |
+
new_width = int(image.width * scale_factor)
|
| 158 |
+
new_height = int(image.height * scale_factor)
|
| 159 |
+
|
| 160 |
+
# Resize the source image to fit within target size
|
| 161 |
+
source = image.resize((new_width, new_height), Image.LANCZOS)
|
| 162 |
+
|
| 163 |
+
# Apply resize option using percentages
|
| 164 |
+
if resize_option == "Full":
|
| 165 |
+
resize_percentage = 100
|
| 166 |
+
elif resize_option == "50%":
|
| 167 |
+
resize_percentage = 50
|
| 168 |
+
elif resize_option == "33%":
|
| 169 |
+
resize_percentage = 33
|
| 170 |
+
elif resize_option == "25%":
|
| 171 |
+
resize_percentage = 25
|
| 172 |
+
else: # Custom
|
| 173 |
+
resize_percentage = custom_resize_percentage
|
| 174 |
+
|
| 175 |
+
# Calculate new dimensions based on percentage
|
| 176 |
+
resize_factor = resize_percentage / 100
|
| 177 |
+
new_width = int(source.width * resize_factor)
|
| 178 |
+
new_height = int(source.height * resize_factor)
|
| 179 |
+
|
| 180 |
+
# Ensure minimum size of 64 pixels
|
| 181 |
+
new_width = max(new_width, 64)
|
| 182 |
+
new_height = max(new_height, 64)
|
| 183 |
+
|
| 184 |
+
# Resize the image
|
| 185 |
+
source = source.resize((new_width, new_height), Image.LANCZOS)
|
| 186 |
+
|
| 187 |
+
# Calculate the overlap in pixels based on the percentage
|
| 188 |
+
overlap_x = int(new_width * (overlap_percentage / 100))
|
| 189 |
+
overlap_y = int(new_height * (overlap_percentage / 100))
|
| 190 |
+
|
| 191 |
+
# Ensure minimum overlap of 1 pixel
|
| 192 |
+
overlap_x = max(overlap_x, 1)
|
| 193 |
+
overlap_y = max(overlap_y, 1)
|
| 194 |
+
|
| 195 |
+
# Calculate margins based on alignment
|
| 196 |
+
if alignment == "Middle":
|
| 197 |
+
margin_x = (target_size[0] - new_width) // 2
|
| 198 |
+
margin_y = (target_size[1] - new_height) // 2
|
| 199 |
+
elif alignment == "Left":
|
| 200 |
+
margin_x = 0
|
| 201 |
+
margin_y = (target_size[1] - new_height) // 2
|
| 202 |
+
elif alignment == "Right":
|
| 203 |
+
margin_x = target_size[0] - new_width
|
| 204 |
+
margin_y = (target_size[1] - new_height) // 2
|
| 205 |
+
elif alignment == "Top":
|
| 206 |
+
margin_x = (target_size[0] - new_width) // 2
|
| 207 |
+
margin_y = 0
|
| 208 |
+
elif alignment == "Bottom":
|
| 209 |
+
margin_x = (target_size[0] - new_width) // 2
|
| 210 |
+
margin_y = target_size[1] - new_height
|
| 211 |
+
|
| 212 |
+
# Adjust margins to eliminate gaps
|
| 213 |
+
margin_x = max(0, min(margin_x, target_size[0] - new_width))
|
| 214 |
+
margin_y = max(0, min(margin_y, target_size[1] - new_height))
|
| 215 |
+
|
| 216 |
+
# Create a new background image with white margins and paste the resized source image
|
| 217 |
+
background = Image.new('RGB', target_size, (255, 255, 255))
|
| 218 |
+
background.paste(source, (margin_x, margin_y))
|
| 219 |
+
|
| 220 |
+
# Create the mask
|
| 221 |
+
mask = Image.new('L', target_size, 255)
|
| 222 |
+
mask_draw = ImageDraw.Draw(mask)
|
| 223 |
+
|
| 224 |
+
# Calculate overlap areas
|
| 225 |
+
white_gaps_patch = 2
|
| 226 |
+
left_overlap = margin_x + overlap_x if overlap_left else margin_x + white_gaps_patch
|
| 227 |
+
right_overlap = margin_x + new_width - overlap_x if overlap_right else margin_x + new_width - white_gaps_patch
|
| 228 |
+
top_overlap = margin_y + overlap_y if overlap_top else margin_y + white_gaps_patch
|
| 229 |
+
bottom_overlap = margin_y + new_height - overlap_y if overlap_bottom else margin_y + new_height - white_gaps_patch
|
| 230 |
+
|
| 231 |
+
if alignment == "Left":
|
| 232 |
+
left_overlap = margin_x + overlap_x if overlap_left else margin_x
|
| 233 |
+
elif alignment == "Right":
|
| 234 |
+
right_overlap = margin_x + new_width - overlap_x if overlap_right else margin_x + new_width
|
| 235 |
+
elif alignment == "Top":
|
| 236 |
+
top_overlap = margin_y + overlap_y if overlap_top else margin_y
|
| 237 |
+
elif alignment == "Bottom":
|
| 238 |
+
bottom_overlap = margin_y + new_height - overlap_y if overlap_bottom else margin_y + new_height
|
| 239 |
+
|
| 240 |
+
# Draw the mask
|
| 241 |
+
mask_draw.rectangle([
|
| 242 |
+
(left_overlap, top_overlap),
|
| 243 |
+
(right_overlap, bottom_overlap)
|
| 244 |
+
], fill=0)
|
| 245 |
+
|
| 246 |
+
return background, mask
|
| 247 |
+
|
| 248 |
+
def preview_image_and_mask(image, width, height, overlap_percentage, resize_option, custom_resize_percentage, alignment, overlap_left, overlap_right, overlap_top, overlap_bottom):
|
| 249 |
+
"""Creates a preview showing the mask overlay."""
|
| 250 |
+
background, mask = prepare_image_and_mask(image, width, height, overlap_percentage, resize_option, custom_resize_percentage, alignment, overlap_left, overlap_right, overlap_top, overlap_bottom)
|
| 251 |
+
|
| 252 |
+
# Create a preview image showing the mask
|
| 253 |
+
preview = background.copy().convert('RGBA')
|
| 254 |
+
|
| 255 |
+
# Create a semi-transparent red overlay
|
| 256 |
+
red_overlay = Image.new('RGBA', background.size, (255, 0, 0, 64)) # Reduced alpha to 64 (25% opacity)
|
| 257 |
+
|
| 258 |
+
# Convert black pixels in the mask to semi-transparent red
|
| 259 |
+
red_mask = Image.new('RGBA', background.size, (0, 0, 0, 0))
|
| 260 |
+
red_mask.paste(red_overlay, (0, 0), mask)
|
| 261 |
+
|
| 262 |
+
# Overlay the red mask on the background
|
| 263 |
+
preview = Image.alpha_composite(preview, red_mask)
|
| 264 |
+
|
| 265 |
+
return preview
|
| 266 |
|
| 267 |
# --- Model Loading ---
|
| 268 |
dtype = torch.bfloat16
|
|
|
|
| 271 |
pipe.transformer.__class__ = QwenImageTransformer2DModel
|
| 272 |
pipe.transformer.set_attn_processor(QwenDoubleStreamAttnProcessorFA3())
|
| 273 |
|
|
|
|
| 274 |
# --- Ahead-of-time compilation ---
|
| 275 |
optimize_pipeline_(pipe, image=Image.new("RGB", (1024, 1024)), prompt="prompt")
|
| 276 |
|
| 277 |
# --- UI Constants and Helpers ---
|
| 278 |
MAX_SEED = np.iinfo(np.int32).max
|
| 279 |
|
| 280 |
+
def preload_presets(target_ratio, ui_width, ui_height):
|
| 281 |
+
"""Updates the width and height sliders based on the selected aspect ratio."""
|
| 282 |
+
if target_ratio == "9:16":
|
| 283 |
+
changed_width = 720
|
| 284 |
+
changed_height = 1280
|
| 285 |
+
return changed_width, changed_height, gr.update()
|
| 286 |
+
elif target_ratio == "16:9":
|
| 287 |
+
changed_width = 1280
|
| 288 |
+
changed_height = 720
|
| 289 |
+
return changed_width, changed_height, gr.update()
|
| 290 |
+
elif target_ratio == "1:1":
|
| 291 |
+
changed_width = 1024
|
| 292 |
+
changed_height = 1024
|
| 293 |
+
return changed_width, changed_height, gr.update()
|
| 294 |
+
elif target_ratio == "Custom":
|
| 295 |
+
return ui_width, ui_height, gr.update(open=True)
|
| 296 |
+
|
| 297 |
+
def select_the_right_preset(user_width, user_height):
|
| 298 |
+
if user_width == 720 and user_height == 1280:
|
| 299 |
+
return "9:16"
|
| 300 |
+
elif user_width == 1280 and user_height == 720:
|
| 301 |
+
return "16:9"
|
| 302 |
+
elif user_width == 1024 and user_height == 1024:
|
| 303 |
+
return "1:1"
|
| 304 |
+
else:
|
| 305 |
+
return "Custom"
|
| 306 |
+
|
| 307 |
+
def toggle_custom_resize_slider(resize_option):
|
| 308 |
+
return gr.update(visible=(resize_option == "Custom"))
|
| 309 |
+
|
| 310 |
+
# --- Main Inference Function (with outpainting preprocessing) ---
|
| 311 |
@spaces.GPU(duration=120)
|
| 312 |
def infer(
|
| 313 |
image,
|
| 314 |
prompt,
|
| 315 |
+
width,
|
| 316 |
+
height,
|
| 317 |
+
overlap_percentage,
|
| 318 |
+
resize_option,
|
| 319 |
+
custom_resize_percentage,
|
| 320 |
+
alignment,
|
| 321 |
+
overlap_left,
|
| 322 |
+
overlap_right,
|
| 323 |
+
overlap_top,
|
| 324 |
+
overlap_bottom,
|
| 325 |
seed=42,
|
| 326 |
randomize_seed=False,
|
| 327 |
true_guidance_scale=4.0,
|
|
|
|
| 330 |
progress=gr.Progress(track_tqdm=True),
|
| 331 |
):
|
| 332 |
"""
|
| 333 |
+
Generates an outpainted image using the Qwen-Image-Edit pipeline.
|
| 334 |
"""
|
| 335 |
# Hardcode the negative prompt as requested
|
| 336 |
negative_prompt = " "
|
|
|
|
| 341 |
# Set up the generator for reproducibility
|
| 342 |
generator = torch.Generator(device=device).manual_seed(seed)
|
| 343 |
|
| 344 |
+
print(f"Original Prompt: '{prompt}'")
|
| 345 |
print(f"Negative Prompt: '{negative_prompt}'")
|
| 346 |
print(f"Seed: {seed}, Steps: {num_inference_steps}")
|
| 347 |
|
|
|
|
| 349 |
prompt = polish_prompt(prompt, image)
|
| 350 |
print(f"Rewritten Prompt: {prompt}")
|
| 351 |
|
| 352 |
+
# Prepare the image with white margins for outpainting
|
| 353 |
+
outpaint_image, mask = prepare_image_and_mask(
|
| 354 |
+
image, width, height, overlap_percentage,
|
| 355 |
+
resize_option, custom_resize_percentage, alignment,
|
| 356 |
+
overlap_left, overlap_right, overlap_top, overlap_bottom
|
| 357 |
+
)
|
| 358 |
+
|
| 359 |
+
# Check if expansion is possible
|
| 360 |
+
if not can_expand(image.width, image.height, width, height, alignment):
|
| 361 |
+
alignment = "Middle"
|
| 362 |
+
outpaint_image, mask = prepare_image_and_mask(
|
| 363 |
+
image, width, height, overlap_percentage,
|
| 364 |
+
resize_option, custom_resize_percentage, "Middle",
|
| 365 |
+
overlap_left, overlap_right, overlap_top, overlap_bottom
|
| 366 |
+
)
|
| 367 |
+
|
| 368 |
+
print(f"Outpaint dimensions: {outpaint_image.size}")
|
| 369 |
+
|
| 370 |
+
# Generate the image with outpainting preprocessing
|
| 371 |
+
result_image = pipe(
|
| 372 |
+
outpaint_image, # Use the preprocessed image with white margins
|
| 373 |
prompt=prompt,
|
| 374 |
negative_prompt=negative_prompt,
|
| 375 |
num_inference_steps=num_inference_steps,
|
|
|
|
| 377 |
true_cfg_scale=true_guidance_scale,
|
| 378 |
).images[0]
|
| 379 |
|
| 380 |
+
return result_image, seed
|
| 381 |
|
| 382 |
# --- Examples and UI Layout ---
|
| 383 |
examples = []
|
|
|
|
| 388 |
max-width: 1024px;
|
| 389 |
}
|
| 390 |
#edit_text{margin-top: -62px !important}
|
| 391 |
+
.preview-container {
|
| 392 |
+
border: 1px solid #e0e0e0;
|
| 393 |
+
border-radius: 8px;
|
| 394 |
+
padding: 10px;
|
| 395 |
+
margin-top: 10px;
|
| 396 |
+
}
|
| 397 |
"""
|
| 398 |
|
| 399 |
with gr.Blocks(css=css) as demo:
|
|
|
|
| 404 |
</div>
|
| 405 |
""")
|
| 406 |
gr.Markdown("""
|
| 407 |
+
## Qwen-Image Edit with Outpainting
|
| 408 |
+
|
| 409 |
+
Extend your images beyond their original boundaries with intelligent outpainting. The model will generate new content that seamlessly blends with your original image.
|
| 410 |
+
|
| 411 |
[Learn more](https://github.com/QwenLM/Qwen-Image) about the Qwen-Image series.
|
| 412 |
+
Try on [Qwen Chat](https://chat.qwen.ai/), or [download model](https://huggingface.co/Qwen/Qwen-Image-Edit) to run locally.
|
| 413 |
""")
|
| 414 |
+
|
| 415 |
with gr.Row():
|
| 416 |
with gr.Column():
|
| 417 |
+
input_image = gr.Image(label="Input Image", type="pil")
|
| 418 |
+
|
| 419 |
prompt = gr.Text(
|
| 420 |
label="Prompt",
|
| 421 |
+
placeholder="Describe what should appear in the extended areas",
|
|
|
|
| 422 |
container=False,
|
| 423 |
)
|
| 424 |
+
|
| 425 |
+
with gr.Row():
|
| 426 |
+
target_ratio = gr.Radio(
|
| 427 |
+
label="Target Ratio",
|
| 428 |
+
choices=["9:16", "16:9", "1:1", "Custom"],
|
| 429 |
+
value="16:9",
|
| 430 |
+
scale=2
|
| 431 |
+
)
|
| 432 |
+
alignment_dropdown = gr.Dropdown(
|
| 433 |
+
choices=["Middle", "Left", "Right", "Top", "Bottom"],
|
| 434 |
+
value="Middle",
|
| 435 |
+
label="Alignment"
|
| 436 |
+
)
|
| 437 |
+
|
| 438 |
+
run_button = gr.Button("Outpaint!", variant="primary")
|
| 439 |
+
|
| 440 |
+
with gr.Accordion("Outpainting Settings", open=False) as settings_panel:
|
| 441 |
+
with gr.Row():
|
| 442 |
+
width_slider = gr.Slider(
|
| 443 |
+
label="Target Width",
|
| 444 |
+
minimum=512,
|
| 445 |
+
maximum=2048,
|
| 446 |
+
step=8,
|
| 447 |
+
value=1280,
|
| 448 |
+
)
|
| 449 |
+
height_slider = gr.Slider(
|
| 450 |
+
label="Target Height",
|
| 451 |
+
minimum=512,
|
| 452 |
+
maximum=2048,
|
| 453 |
+
step=8,
|
| 454 |
+
value=720,
|
| 455 |
+
)
|
| 456 |
+
|
| 457 |
+
with gr.Group():
|
| 458 |
+
overlap_percentage = gr.Slider(
|
| 459 |
+
label="Mask overlap (%)",
|
| 460 |
+
minimum=1,
|
| 461 |
+
maximum=50,
|
| 462 |
+
value=10,
|
| 463 |
+
step=1,
|
| 464 |
+
info="Controls the blending area between original and new content"
|
| 465 |
+
)
|
| 466 |
+
|
| 467 |
+
with gr.Row():
|
| 468 |
+
overlap_top = gr.Checkbox(label="Overlap Top", value=True)
|
| 469 |
+
overlap_right = gr.Checkbox(label="Overlap Right", value=True)
|
| 470 |
+
with gr.Row():
|
| 471 |
+
overlap_left = gr.Checkbox(label="Overlap Left", value=True)
|
| 472 |
+
overlap_bottom = gr.Checkbox(label="Overlap Bottom", value=True)
|
| 473 |
+
|
| 474 |
+
with gr.Row():
|
| 475 |
+
resize_option = gr.Radio(
|
| 476 |
+
label="Resize input image",
|
| 477 |
+
choices=["Full", "50%", "33%", "25%", "Custom"],
|
| 478 |
+
value="Full",
|
| 479 |
+
info="How much of the target canvas the original image should occupy"
|
| 480 |
+
)
|
| 481 |
+
custom_resize_percentage = gr.Slider(
|
| 482 |
+
label="Custom resize (%)",
|
| 483 |
+
minimum=1,
|
| 484 |
+
maximum=100,
|
| 485 |
+
step=1,
|
| 486 |
+
value=50,
|
| 487 |
+
visible=False
|
| 488 |
+
)
|
| 489 |
+
|
| 490 |
+
preview_button = gr.Button("Preview alignment and mask", variant="secondary")
|
| 491 |
+
|
| 492 |
+
with gr.Accordion("Advanced Settings", open=False):
|
| 493 |
+
seed = gr.Slider(
|
| 494 |
+
label="Seed",
|
| 495 |
+
minimum=0,
|
| 496 |
+
maximum=MAX_SEED,
|
| 497 |
+
step=1,
|
| 498 |
+
value=0,
|
| 499 |
+
)
|
| 500 |
+
|
| 501 |
+
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
| 502 |
+
|
| 503 |
+
with gr.Row():
|
| 504 |
+
true_guidance_scale = gr.Slider(
|
| 505 |
+
label="True guidance scale",
|
| 506 |
+
minimum=1.0,
|
| 507 |
+
maximum=10.0,
|
| 508 |
+
step=0.1,
|
| 509 |
+
value=1.0
|
| 510 |
+
)
|
| 511 |
+
|
| 512 |
+
num_inference_steps = gr.Slider(
|
| 513 |
+
label="Number of inference steps",
|
| 514 |
+
minimum=1,
|
| 515 |
+
maximum=50,
|
| 516 |
+
step=1,
|
| 517 |
+
value=50,
|
| 518 |
+
)
|
| 519 |
+
|
| 520 |
+
rewrite_prompt = gr.Checkbox(
|
| 521 |
+
label="Enhance prompt (using HF Inference)",
|
| 522 |
+
value=True
|
| 523 |
+
)
|
| 524 |
|
| 525 |
+
with gr.Column():
|
| 526 |
+
result = gr.Image(label="Result", type="pil")
|
| 527 |
+
|
| 528 |
+
with gr.Column(visible=False) as preview_container:
|
| 529 |
+
preview_image = gr.Image(label="Preview (red area will be generated)", type="pil")
|
| 530 |
+
|
| 531 |
+
# Event handlers
|
| 532 |
+
target_ratio.change(
|
| 533 |
+
fn=preload_presets,
|
| 534 |
+
inputs=[target_ratio, width_slider, height_slider],
|
| 535 |
+
outputs=[width_slider, height_slider, settings_panel],
|
| 536 |
+
queue=False,
|
| 537 |
+
)
|
| 538 |
+
|
| 539 |
+
width_slider.change(
|
| 540 |
+
fn=select_the_right_preset,
|
| 541 |
+
inputs=[width_slider, height_slider],
|
| 542 |
+
outputs=[target_ratio],
|
| 543 |
+
queue=False,
|
| 544 |
+
)
|
| 545 |
+
|
| 546 |
+
height_slider.change(
|
| 547 |
+
fn=select_the_right_preset,
|
| 548 |
+
inputs=[width_slider, height_slider],
|
| 549 |
+
outputs=[target_ratio],
|
| 550 |
+
queue=False,
|
| 551 |
+
)
|
| 552 |
+
|
| 553 |
+
resize_option.change(
|
| 554 |
+
fn=toggle_custom_resize_slider,
|
| 555 |
+
inputs=[resize_option],
|
| 556 |
+
outputs=[custom_resize_percentage],
|
| 557 |
+
queue=False,
|
| 558 |
+
)
|
| 559 |
+
|
| 560 |
+
preview_button.click(
|
| 561 |
+
fn=lambda: gr.update(visible=True),
|
| 562 |
+
inputs=None,
|
| 563 |
+
outputs=[preview_container],
|
| 564 |
+
queue=False,
|
| 565 |
+
).then(
|
| 566 |
+
fn=preview_image_and_mask,
|
| 567 |
+
inputs=[
|
| 568 |
+
input_image, width_slider, height_slider, overlap_percentage,
|
| 569 |
+
resize_option, custom_resize_percentage, alignment_dropdown,
|
| 570 |
+
overlap_left, overlap_right, overlap_top, overlap_bottom
|
| 571 |
+
],
|
| 572 |
+
outputs=preview_image,
|
| 573 |
+
queue=False,
|
| 574 |
+
)
|
| 575 |
|
| 576 |
gr.on(
|
| 577 |
triggers=[run_button.click, prompt.submit],
|
|
|
|
| 579 |
inputs=[
|
| 580 |
input_image,
|
| 581 |
prompt,
|
| 582 |
+
width_slider,
|
| 583 |
+
height_slider,
|
| 584 |
+
overlap_percentage,
|
| 585 |
+
resize_option,
|
| 586 |
+
custom_resize_percentage,
|
| 587 |
+
alignment_dropdown,
|
| 588 |
+
overlap_left,
|
| 589 |
+
overlap_right,
|
| 590 |
+
overlap_top,
|
| 591 |
+
overlap_bottom,
|
| 592 |
seed,
|
| 593 |
randomize_seed,
|
| 594 |
true_guidance_scale,
|