File size: 10,870 Bytes
9ba0d86 9e82853 9ba0d86 9e82853 9ba0d86 cdb334c 9ba0d86 cdb334c 9ba0d86 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 |
from PIL import Image, ImageDraw, ImageFont
import os
import base64
import json
import requests
from io import BytesIO
import threading
from datetime import datetime
import paho.mqtt.client as mqtt
import gradio as gr
from api import predict_image
# Constants and configuration
IMAGE_PATH = "received_image.jpg"
IMAGE_HISTORY_DIR = "image_history"
MAX_HISTORY_SIZE = 100
MQTT_CONFIG = {
"broker": "47.254.33.128",
"port": 1883,
"topic": "x1/bugs",
"username": "my",
"password": "my123456"
}
# Global variables
mqtt_client = None
latest_image_info = {"path": None, "date": None, "objnum": None}
image_history = []
mqtt_status = "<span style='color: red;'>MQTT Disconnected</span>"
current_prompt = "all"
current_task = "<OD>"
task_name = {
"detect all objects": "<OD>",
"detect by vocabulary": "<OPEN_VOCABULARY_DETECTION>",
"detect by phrase": "<CAPTION_TO_PHRASE_GROUNDING>"
}
# Create directories if not exist
os.makedirs(IMAGE_HISTORY_DIR, exist_ok=True)
# MQTT callback functions
def on_connect(client, userdata, flags, rc):
global mqtt_status
if rc == 0:
client.subscribe(MQTT_CONFIG["topic"])
mqtt_status = "<span style='color: green;'>MQTT Connected</span>"
else:
mqtt_status = "<span style='color: red;'>MQTT Disconnected</span>"
def on_disconnect(client, userdata, rc):
global mqtt_status
mqtt_status = "<span style='color: red;'>MQTT Disconnected</span>"
def on_message(client, userdata, msg):
threading.Thread(target=handle_message, args=(msg,)).start()
def handle_message(msg):
try:
print("Received message")
data = json.loads(msg.payload)
image_data = data["values"]["image"].split(",")[1]
localtime = data["values"]["localtime"]
image = Image.open(BytesIO(base64.b64decode(image_data)))
if image.mode == "RGBA":
image = image.convert("RGB")
image.save(IMAGE_PATH)
image_history_path = os.path.join(IMAGE_HISTORY_DIR, f"{localtime.replace(' ', '_').replace(':', '-')}.jpg")
image.save(image_history_path)
prediction = predict_image_json(image, current_task, current_prompt)
annotated_image_path = annotate_image(image, prediction, current_task)
detected_objects = predicted_objects_num(prediction, current_task)
latest_image_info.update({
"path": annotated_image_path,
"date": localtime,
"objnum": detected_objects
})
image_history.append((image_history_path, localtime))
manage_history_size()
except Exception as e:
print(f"Error processing message: {e}")
def convert_to_od_format(data):
bboxes = data.get('bboxes', [])
labels = data.get('bboxes_labels', [])
od_results = {
'bboxes': bboxes,
'labels': labels
}
return od_results
def predict_image_json(image, task, prompt):
msgid = str(datetime.now().timestamp())
if task == "<OD>":
prompt = ""
prediction = predict_image(image, task, prompt)
if task == "<OPEN_VOCABULARY_DETECTION>":
prediction[task] = convert_to_od_format(prediction[task])
return prediction
def annotate_image(image, prediction, task):
draw = ImageDraw.Draw(image)
width, height = image.size
scale = max(width, height) / 1000 # Scale factor based on image size
font_size = int(30 * scale) # Scale font size
line_width = int(3 * scale) # Scale line width
try:
font = ImageFont.truetype("DejaVuSans.ttf", font_size)
except IOError:
font = ImageFont.load_default()
for bbox, label in zip(prediction[task]["bboxes"], prediction[task]["labels"]):
x1, y1, x2, y2 = bbox
draw.rectangle([x1, y1, x2, y2], outline="yellow", width=line_width)
text_bbox = draw.textbbox((x1, y1), label, font=font)
draw.rectangle([text_bbox[0], text_bbox[1], text_bbox[2], text_bbox[3]], fill="black")
draw.text((x1, y1), label, fill="white", font=font)
annotated_image_path = IMAGE_PATH.replace(".jpg", "_annotated.jpg")
image.save(annotated_image_path)
return annotated_image_path
def predicted_objects_num(prediction, task):
return len(prediction[task]["bboxes"])
def start_mqtt_client(broker, port, topic, username, password):
global mqtt_client
if mqtt_client is not None:
mqtt_client.disconnect()
mqtt_client = mqtt.Client()
mqtt_client.username_pw_set(username, password)
mqtt_client.on_connect = on_connect
mqtt_client.on_disconnect = on_disconnect
mqtt_client.on_message = on_message
mqtt_client.connect(broker, port, 60)
mqtt_client.loop_start()
def display_image():
print("Displaying latest image...")
return latest_image_info["path"], latest_image_info["objnum"]
def display_image_history():
return [(path, date) for path, date in image_history]
def show_prediction_on_history(evt: gr.SelectData):
image_path = image_history[int(evt.index)][0]
image = Image.open(image_path)
image.save(IMAGE_PATH)
prediction = predict_image_json(image, current_task, current_prompt)
annotated_image_path = annotate_image(image, prediction, current_task)
predicted_objects = predicted_objects_num(prediction, current_task)
latest_image_info["path"] = annotated_image_path
latest_image_info["objnum"] = predicted_objects
return annotated_image_path, predicted_objects
def update_mqtt_config(broker, port, topic, username, password):
start_mqtt_client(broker, int(port), topic, username, password)
return f"Connected to {broker}:{port}, subscribed to topic '{topic}'"
def auto_connect():
update_mqtt_config(
MQTT_CONFIG["broker"],
MQTT_CONFIG["port"],
MQTT_CONFIG["topic"],
MQTT_CONFIG["username"],
MQTT_CONFIG["password"]
)
def history_image_load():
global image_history
image_history = []
for filename in os.listdir(IMAGE_HISTORY_DIR):
if filename.endswith(".jpg"):
image_history.append((os.path.join(IMAGE_HISTORY_DIR, filename), filename.replace("_", " ").replace("-", ":")))
image_history.sort(key=lambda x: x[1])
manage_history_size()
def get_mqtt_status():
return mqtt_status
def upload_image(filepath):
image = Image.open(filepath)
if image.mode == "RGBA":
image = image.convert("RGB")
image.save(IMAGE_PATH)
localtime = datetime.now().strftime('%Y-%m-%d %H:%M:%S')
image_history_path = os.path.join(IMAGE_HISTORY_DIR, f"{localtime.replace(' ', '_').replace(':', '-')}.jpg")
image.save(image_history_path)
prediction = predict_image_json(image, current_task, current_prompt)
annotated_image_path = annotate_image(image, prediction, current_task)
predicted_objects = predicted_objects_num(prediction, current_task)
latest_image_info.update({
"path": annotated_image_path,
"date": localtime,
"objnum": predicted_objects
})
image_history.append((image_history_path, localtime))
manage_history_size()
return annotated_image_path, predicted_objects, display_image_history()
def manage_history_size():
global image_history
if len(image_history) > MAX_HISTORY_SIZE:
for i in range(2):
os.remove(image_history.pop(0)[0])
def commit_prompt(prompt):
global current_prompt
print(f"Updating prompt to: {prompt}")
if prompt == "":
prompt = "all"
current_prompt = prompt
image = Image.open(IMAGE_PATH)
prediction = predict_image_json(image, current_task, current_prompt)
annotated_image_path = annotate_image(image, prediction, current_task)
predicted_objects = predicted_objects_num(prediction, current_task)
latest_image_info["path"] = annotated_image_path
latest_image_info["objnum"] = predicted_objects
return annotated_image_path, predicted_objects
def update_task(task, prompt):
global current_task
task = task_name[task]
current_task = task
if task == "<OD>":
current_prompt = ""
else:
current_prompt = prompt
print(f"Updating task to: {task}, prompt to: {current_prompt}")
return gr.update(visible=task != "<OD>")
with gr.Blocks(css="footer {visibility: hidden}") as iface:
gr.Markdown("## MS Computer Vision Demo")
mqtt_status_output = gr.HTML(value=mqtt_status)
with gr.Accordion("MQTT Settings", open=False):
with gr.Row():
broker_input = gr.Textbox(label="MQTT Broker", value=MQTT_CONFIG["broker"])
port_input = gr.Textbox(label="MQTT Port", value=str(MQTT_CONFIG["port"]))
topic_input = gr.Textbox(label="MQTT Topic", value=MQTT_CONFIG["topic"])
with gr.Row():
username_input = gr.Textbox(label="MQTT Username", value=MQTT_CONFIG["username"])
password_input = gr.Textbox(label="MQTT Password", type="password", value=MQTT_CONFIG["password"])
connect_button = gr.Button("Connect")
connect_button.click(
fn=update_mqtt_config,
inputs=[broker_input, port_input, topic_input, username_input, password_input],
outputs=[]
)
with gr.Row():
with gr.Column(scale=2):
image_output = gr.Image(label="Latest Image")
detected_objects_output = gr.Textbox(label="Detected Objects Count", placeholder="No objects detected", interactive=False)
task_input = gr.Dropdown(
label="Task",
choices=list(task_name.keys()),
value="detect all objects"
)
prompt_input = gr.Textbox(label="Prompt(Optional)", placeholder="what is object want to detect?", visible=False)
task_input.change(fn=update_task, inputs=[task_input, prompt_input], outputs=[prompt_input])
commit_button = gr.Button("Commit")
commit_button.click(fn=commit_prompt, inputs=[prompt_input], outputs=[image_output, detected_objects_output])
with gr.Column(scale=1):
history_output = gr.Gallery(label="History Image", columns=3)
upload_button = gr.UploadButton(label="Upload Image", file_types=["image"])
upload_button.upload(fn=upload_image, inputs=upload_button, outputs=[image_output, detected_objects_output, history_output])
def refresh_interface():
return display_image()
def refresh_history():
return display_image_history()
history_output.change(fn=refresh_interface, outputs=[image_output, detected_objects_output])
history_image_load()
iface.load(fn=refresh_history, inputs=[], outputs=history_output, every=0.5)
auto_connect()
iface.load(fn=get_mqtt_status, inputs=[], outputs=mqtt_status_output)
history_output.select(fn=show_prediction_on_history, outputs=[image_output, detected_objects_output])
iface.launch(share=True)
|