Upload folder using huggingface_hub
Browse files- __pycache__/api.cpython-310.pyc +0 -0
- api.py +1 -1
- app.py +2 -6
- image_history/2024-07-31_16-22-32.jpg +0 -0
- image_history/2024-07-31_16-23-47.jpg +0 -0
- received_image.jpg +0 -0
- received_image_annotated.jpg +0 -0
- requirements.txt +1 -1
__pycache__/api.cpython-310.pyc
ADDED
Binary file (2.61 kB). View file
|
|
api.py
CHANGED
@@ -11,7 +11,7 @@ app = Flask(__name__)
|
|
11 |
|
12 |
# Parse command line arguments
|
13 |
parser = argparse.ArgumentParser(description='Start the Flask server with specified model and device.')
|
14 |
-
parser.add_argument('--model-path', type=str,
|
15 |
parser.add_argument('--device', type=str, choices=['cpu', 'gpu'], default='auto', help='Device to use: "cpu", "gpu", or "auto"')
|
16 |
args = parser.parse_args()
|
17 |
|
|
|
11 |
|
12 |
# Parse command line arguments
|
13 |
parser = argparse.ArgumentParser(description='Start the Flask server with specified model and device.')
|
14 |
+
parser.add_argument('--model-path', type=str, default="models/Florence-2-base-ft", help='Path to the pretrained model')
|
15 |
parser.add_argument('--device', type=str, choices=['cpu', 'gpu'], default='auto', help='Device to use: "cpu", "gpu", or "auto"')
|
16 |
args = parser.parse_args()
|
17 |
|
app.py
CHANGED
@@ -8,6 +8,7 @@ import threading
|
|
8 |
from datetime import datetime
|
9 |
import paho.mqtt.client as mqtt
|
10 |
import gradio as gr
|
|
|
11 |
|
12 |
# Constants and configuration
|
13 |
IMAGE_PATH = "received_image.jpg"
|
@@ -97,12 +98,7 @@ def predict_image_json(image, task, prompt):
|
|
97 |
msgid = str(datetime.now().timestamp())
|
98 |
if task == "<OD>":
|
99 |
prompt = ""
|
100 |
-
|
101 |
-
image.save(buffered, format="JPEG")
|
102 |
-
image_base64 = base64.b64encode(buffered.getvalue()).decode('utf-8')
|
103 |
-
json_data = json.dumps({"msgid": msgid, "task": task, "prompt": prompt, "image": f"data:image/jpeg;base64,{image_base64}"})
|
104 |
-
response = requests.post("http://localhost:5000/predict", headers={"Content-Type": "application/json"}, data=json_data)
|
105 |
-
prediction = response.json().get("prediction", {})
|
106 |
if task == "<OPEN_VOCABULARY_DETECTION>":
|
107 |
prediction[task] = convert_to_od_format(prediction[task])
|
108 |
return prediction
|
|
|
8 |
from datetime import datetime
|
9 |
import paho.mqtt.client as mqtt
|
10 |
import gradio as gr
|
11 |
+
from api import predict_image
|
12 |
|
13 |
# Constants and configuration
|
14 |
IMAGE_PATH = "received_image.jpg"
|
|
|
98 |
msgid = str(datetime.now().timestamp())
|
99 |
if task == "<OD>":
|
100 |
prompt = ""
|
101 |
+
prediction = predict_image(image, task, prompt)
|
|
|
|
|
|
|
|
|
|
|
102 |
if task == "<OPEN_VOCABULARY_DETECTION>":
|
103 |
prediction[task] = convert_to_od_format(prediction[task])
|
104 |
return prediction
|
image_history/2024-07-31_16-22-32.jpg
ADDED
image_history/2024-07-31_16-23-47.jpg
ADDED
received_image.jpg
ADDED
received_image_annotated.jpg
ADDED
requirements.txt
CHANGED
@@ -1 +1 @@
|
|
1 |
-
paho
|
|
|
1 |
+
paho
|