File size: 11,582 Bytes
55d914b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
import os
import inspect
from typing import Any, Callable, Dict, List, Optional, Union

from PIL import Image
import numpy as np
import torch
from huggingface_hub import snapshot_download
from peft import LoraConfig, PeftModel
from diffusers.models import AutoencoderKL
from diffusers.utils import (
    USE_PEFT_BACKEND,
    is_torch_xla_available,
    logging,
    replace_example_docstring,
    scale_lora_layers,
    unscale_lora_layers,
)
from safetensors.torch import load_file

from OmniGen import OmniGen, OmniGenProcessor, OmniGenScheduler

import gc  # For clearing unused objects

logger = logging.get_logger(__name__)

EXAMPLE_DOC_STRING = """

    Examples:

        ```py

        >>> from OmniGen import OmniGenPipeline

        >>> pipe = FluxControlNetPipeline.from_pretrained(

        ...     base_model

        ... )

        >>> prompt = "A woman holds a bouquet of flowers and faces the camera"

        >>> image = pipe(

        ...     prompt,

        ...     guidance_scale=3.0,

        ...     num_inference_steps=50,

        ... ).images[0]

        >>> image.save("t2i.png")

        ```

"""

class OmniGenPipeline:
    def __init__(

        self,

        vae: AutoencoderKL,

        model: OmniGen,

        processor: OmniGenProcessor,



    ):
        self.vae = vae
        self.model = model
        self.processor = processor

        self.device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
        self.model.to(self.device)
        self.model.eval()
        self.vae.to(self.device)

    @classmethod
    def from_pretrained(cls, model_name, vae_path: str=None, Quantization: bool=False):
        if not os.path.exists(model_name) or (not os.path.exists(os.path.join(model_name, 'model.safetensors')) and model_name == "Shitao/OmniGen-v1"):
            logger.info("Model not found, downloading...")
            cache_folder = os.getenv('HF_HUB_CACHE')
            model_name = snapshot_download(repo_id=model_name,
                                        cache_dir=cache_folder,
                                        ignore_patterns=['flax_model.msgpack', 'rust_model.ot', 'tf_model.h5', 'model.pt'])
            logger.info(f"Downloaded model to {model_name}")

        # Pass Quantization parameter to OmniGen's from_pretrained
        model = OmniGen.from_pretrained(model_name, quantize=Quantization)

        processor = OmniGenProcessor.from_pretrained(model_name)

        if os.path.exists(os.path.join(model_name, "vae")):
            vae = AutoencoderKL.from_pretrained(os.path.join(model_name, "vae"))
        elif vae_path is not None:
            vae = AutoencoderKL.from_pretrained(vae_path)
        else:
            logger.info(f"No VAE found in {model_name}, downloading stabilityai/sdxl-vae from HF")
            vae = AutoencoderKL.from_pretrained("stabilityai/sdxl-vae")

        return cls(vae, model, processor)



    def merge_lora(self, lora_path: str):
        model = PeftModel.from_pretrained(self.model, lora_path)
        model.merge_and_unload()

        self.model = model

    def to(self, device: Union[str, torch.device]):
        if isinstance(device, str):
            device = torch.device(device)
        self.model.to(device)
        self.vae.to(device)

    def vae_encode(self, x, dtype):
        if self.vae.config.shift_factor is not None:
            x = self.vae.encode(x).latent_dist.sample()
            x = (x - self.vae.config.shift_factor) * self.vae.config.scaling_factor
        else:
            x = self.vae.encode(x).latent_dist.sample().mul_(self.vae.config.scaling_factor)
        x = x.to(dtype)
        return x

    def move_to_device(self, data):
        if isinstance(data, list):
            return [x.to(self.device) for x in data]
        return data.to(self.device)


    @torch.no_grad()
    @replace_example_docstring(EXAMPLE_DOC_STRING)
    def __call__(

        self,

        prompt: Union[str, List[str]],

        input_images: Union[List[str], List[List[str]]] = None,

        height: int = 1024,

        width: int = 1024,

        num_inference_steps: int = 50,

        guidance_scale: float = 3,

        use_img_guidance: bool = True,

        img_guidance_scale: float = 1.6,

        separate_cfg_infer: bool = False,

        use_kv_cache: bool = True,

        dtype: torch.dtype = torch.bfloat16,

        seed: int = None,

        Quantization: bool = False,

        ):

        r"""

        Function invoked when calling the pipeline for generation.



        Args:

            prompt (`str` or `List[str]`):

                The prompt or prompts to guide the image generation.

            input_images (`List[str]` or `List[List[str]]`, *optional*):

                The list of input images. We will replace the "<|image_i|>" in prompt with the 1-th image in list.

            height (`int`, *optional*, defaults to 1024):

                The height in pixels of the generated image. The number must be a multiple of 16.

            width (`int`, *optional*, defaults to 1024):

                The width in pixels of the generated image. The number must be a multiple of 16.

            num_inference_steps (`int`, *optional*, defaults to 50):

                The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference.

            guidance_scale (`float`, *optional*, defaults to 4.0):

                Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).

                `guidance_scale` is defined as `w` of equation 2. of [Imagen

                Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >

                1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,

                usually at the expense of lower image quality.

            use_img_guidance (`bool`, *optional*, defaults to True):

                Defined as equation 3 in [Instrucpix2pix](https://arxiv.org/pdf/2211.09800).

            img_guidance_scale (`float`, *optional*, defaults to 1.6):

                Defined as equation 3 in [Instrucpix2pix](https://arxiv.org/pdf/2211.09800).

            separate_cfg_infer (`bool`, *optional*, defaults to False):

                Perform inference on images with different guidance separately; this can save memory when generating images of large size at the expense of slower inference.

            use_kv_cache (`bool`, *optional*, defaults to True): enable kv cache to speed up the inference

            generator (`torch.Generator` or `List[torch.Generator]`, *optional*):

                One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)

                to make generation deterministic.

        Examples:



        Returns:

            A list with the generated images.

        """


        assert height%16 == 0 and width%16 == 0
        if separate_cfg_infer:
            use_kv_cache = False
            # raise "Currently, don't support both use_kv_cache and separate_cfg_infer"
        if input_images is None:
            use_img_guidance = False
        if isinstance(prompt, str):
            prompt = [prompt]
            input_images = [input_images] if input_images is not None else None


        input_data = self.processor(prompt, input_images, height=height, width=width, use_img_cfg=use_img_guidance, separate_cfg_input=separate_cfg_infer)

        num_prompt = len(prompt)
        num_cfg = 2 if use_img_guidance else 1
        latent_size_h, latent_size_w = height // 8, width // 8

        if seed is not None:
            generator = torch.Generator(device=self.device).manual_seed(seed)
        else:
            generator = None
        latents = torch.randn(num_prompt, 4, latent_size_h, latent_size_w, device=self.device, generator=generator)
        latents = torch.cat([latents] * (1 + num_cfg), 0).to(dtype)


        # Load VAE into VRAM (GPU) in bfloat16
        self.vae.to(self.device, dtype=torch.bfloat16)




        input_img_latents = []
        if separate_cfg_infer:
            for temp_pixel_values in input_data['input_pixel_values']:
                temp_input_latents = []
                for img in temp_pixel_values:
                    img = self.vae_encode(img.to(self.device, dtype=torch.bfloat16), dtype)

                    temp_input_latents.append(img)
                input_img_latents.append(temp_input_latents)
        else:
            for img in input_data['input_pixel_values']:
                img = self.vae_encode(img.to(self.device, dtype=torch.bfloat16), dtype)

                input_img_latents.append(img)



        model_kwargs = dict(input_ids=self.move_to_device(input_data['input_ids']),
            input_img_latents=input_img_latents,
            input_image_sizes=input_data['input_image_sizes'],
            attention_mask=self.move_to_device(input_data["attention_mask"]),
            position_ids=self.move_to_device(input_data["position_ids"]),
            cfg_scale=guidance_scale,
            img_cfg_scale=img_guidance_scale,
            use_img_cfg=use_img_guidance,
            use_kv_cache=use_kv_cache)


        #unlode vae to cpu
        self.vae.to('cpu')
        torch.cuda.empty_cache()  # Clear VRAM
        gc.collect()  # Run garbage collection to free system RAM



        if separate_cfg_infer:
            func = self.model.forward_with_separate_cfg
        else:
            func = self.model.forward_with_cfg


        #move main model to gpu
        self.model.to(self.device, dtype=dtype)


        scheduler = OmniGenScheduler(num_steps=num_inference_steps)
        samples = scheduler(latents, func, model_kwargs, use_kv_cache=use_kv_cache)
        samples = samples.chunk((1 + num_cfg), dim=0)[0]

        if self.vae.config.shift_factor is not None:
            samples = samples / self.vae.config.scaling_factor + self.vae.config.shift_factor
        else:
            samples = samples / self.vae.config.scaling_factor

        #unlode main model to cpu
        self.model.to('cpu')
        torch.cuda.empty_cache()  # Clear VRAM
        gc.collect()  # Run garbage collection to free system RAM

        # Move samples to GPU and ensure they are in bfloat16 (for the VAE)
        samples = samples.to(self.device, dtype=torch.bfloat16)

        # Load VAE into VRAM (GPU) in bfloat16
        self.vae.to(self.device, dtype=torch.bfloat16)

        # Decode the samples using the VAE
        samples = self.vae.decode(samples).sample

        #unlode vae to cpu
        self.vae.to('cpu')
        torch.cuda.empty_cache()  # Clear VRAM
        gc.collect()  # Run garbage collection to free system RAM


        # Convert samples back to float32 for further processing
        samples = samples.to(torch.float32)


        # Convert samples to uint8 for final image output
        output_samples = (samples * 0.5 + 0.5).clamp(0, 1) * 255
        output_samples = output_samples.permute(0, 2, 3, 1).to("cpu", dtype=torch.uint8).numpy()
        # Create output images
        output_images = []
        for i, sample in enumerate(output_samples):
            output_images.append(Image.fromarray(sample))

        # Return the generated images
        return output_images