sudemai commited on
Commit
55d914b
·
verified ·
1 Parent(s): b5e4646

Upload 81 files

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .DS_Store +0 -0
  2. .gitattributes +24 -0
  3. .gitignore +170 -0
  4. LICENSE +21 -0
  5. OmniGen/__init__.py +4 -0
  6. OmniGen/__pycache__/__init__.cpython-310.pyc +0 -0
  7. OmniGen/__pycache__/model.cpython-310.pyc +0 -0
  8. OmniGen/__pycache__/pipeline.cpython-310.pyc +0 -0
  9. OmniGen/__pycache__/processor.cpython-310.pyc +0 -0
  10. OmniGen/__pycache__/scheduler.cpython-310.pyc +0 -0
  11. OmniGen/__pycache__/transformer.cpython-310.pyc +0 -0
  12. OmniGen/__pycache__/utils.cpython-310.pyc +0 -0
  13. OmniGen/model.py +468 -0
  14. OmniGen/pipeline.py +289 -0
  15. OmniGen/processor.py +335 -0
  16. OmniGen/scheduler.py +55 -0
  17. OmniGen/train_helper/__init__.py +2 -0
  18. OmniGen/train_helper/data.py +116 -0
  19. OmniGen/train_helper/loss.py +68 -0
  20. OmniGen/transformer.py +159 -0
  21. OmniGen/utils.py +110 -0
  22. README.md +93 -14
  23. app.py +359 -0
  24. docs/fine-tuning.md +172 -0
  25. docs/inference.md +96 -0
  26. imgs/.DS_Store +0 -0
  27. imgs/demo_cases.png +3 -0
  28. imgs/demo_cases/AI_Pioneers.jpg +0 -0
  29. imgs/demo_cases/edit.png +3 -0
  30. imgs/demo_cases/entity.png +3 -0
  31. imgs/demo_cases/reasoning.png +3 -0
  32. imgs/demo_cases/same_pose.png +3 -0
  33. imgs/demo_cases/skeletal.png +0 -0
  34. imgs/demo_cases/skeletal2img.png +3 -0
  35. imgs/demo_cases/t2i_woman_with_book.png +3 -0
  36. imgs/overall.jpg +3 -0
  37. imgs/referring.png +3 -0
  38. imgs/test_cases/1.jpg +3 -0
  39. imgs/test_cases/2.jpg +3 -0
  40. imgs/test_cases/3.jpg +3 -0
  41. imgs/test_cases/4.jpg +3 -0
  42. imgs/test_cases/Amanda.jpg +3 -0
  43. imgs/test_cases/control.jpg +3 -0
  44. imgs/test_cases/icl1.jpg +0 -0
  45. imgs/test_cases/icl2.jpg +0 -0
  46. imgs/test_cases/icl3.jpg +0 -0
  47. imgs/test_cases/lecun.png +0 -0
  48. imgs/test_cases/mckenna.jpg +3 -0
  49. imgs/test_cases/pose.png +0 -0
  50. imgs/test_cases/rose.jpg +0 -0
.DS_Store ADDED
Binary file (6.15 kB). View file
 
.gitattributes CHANGED
@@ -33,3 +33,27 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ imgs/demo_cases.png filter=lfs diff=lfs merge=lfs -text
37
+ imgs/demo_cases/edit.png filter=lfs diff=lfs merge=lfs -text
38
+ imgs/demo_cases/entity.png filter=lfs diff=lfs merge=lfs -text
39
+ imgs/demo_cases/reasoning.png filter=lfs diff=lfs merge=lfs -text
40
+ imgs/demo_cases/same_pose.png filter=lfs diff=lfs merge=lfs -text
41
+ imgs/demo_cases/skeletal2img.png filter=lfs diff=lfs merge=lfs -text
42
+ imgs/demo_cases/t2i_woman_with_book.png filter=lfs diff=lfs merge=lfs -text
43
+ imgs/overall.jpg filter=lfs diff=lfs merge=lfs -text
44
+ imgs/referring.png filter=lfs diff=lfs merge=lfs -text
45
+ imgs/test_cases/1.jpg filter=lfs diff=lfs merge=lfs -text
46
+ imgs/test_cases/2.jpg filter=lfs diff=lfs merge=lfs -text
47
+ imgs/test_cases/3.jpg filter=lfs diff=lfs merge=lfs -text
48
+ imgs/test_cases/4.jpg filter=lfs diff=lfs merge=lfs -text
49
+ imgs/test_cases/Amanda.jpg filter=lfs diff=lfs merge=lfs -text
50
+ imgs/test_cases/control.jpg filter=lfs diff=lfs merge=lfs -text
51
+ imgs/test_cases/mckenna.jpg filter=lfs diff=lfs merge=lfs -text
52
+ imgs/test_cases/two_man.jpg filter=lfs diff=lfs merge=lfs -text
53
+ imgs/test_cases/woman.png filter=lfs diff=lfs merge=lfs -text
54
+ toy_data/images/cat.png filter=lfs diff=lfs merge=lfs -text
55
+ toy_data/images/dog2.jpeg filter=lfs diff=lfs merge=lfs -text
56
+ toy_data/images/dog3.jpeg filter=lfs diff=lfs merge=lfs -text
57
+ toy_data/images/dog4.jpeg filter=lfs diff=lfs merge=lfs -text
58
+ toy_data/images/dog5.jpeg filter=lfs diff=lfs merge=lfs -text
59
+ toy_data/images/walking.png filter=lfs diff=lfs merge=lfs -text
.gitignore ADDED
@@ -0,0 +1,170 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Byte-compiled / optimized / DLL files
2
+ __pycache__/
3
+ *.py[cod]
4
+ *$py.class
5
+
6
+ # C extensions
7
+ *.so
8
+
9
+ # Distribution / packaging
10
+ .Python
11
+ build/
12
+ develop-eggs/
13
+ dist/
14
+ downloads/
15
+ eggs/
16
+ .eggs/
17
+ lib/
18
+ lib64/
19
+ parts/
20
+ sdist/
21
+ var/
22
+ wheels/
23
+ share/python-wheels/
24
+ *.egg-info/
25
+ .installed.cfg
26
+ *.egg
27
+ MANIFEST
28
+
29
+ # PyInstaller
30
+ # Usually these files are written by a python script from a template
31
+ # before PyInstaller builds the exe, so as to inject date/other infos into it.
32
+ *.manifest
33
+ *.spec
34
+
35
+ # Installer logs
36
+ pip-log.txt
37
+ pip-delete-this-directory.txt
38
+
39
+ # Unit test / coverage reports
40
+ htmlcov/
41
+ .tox/
42
+ .nox/
43
+ .coverage
44
+ .coverage.*
45
+ .cache
46
+ nosetests.xml
47
+ coverage.xml
48
+ *.cover
49
+ *.py,cover
50
+ .hypothesis/
51
+ .pytest_cache/
52
+ cover/
53
+
54
+ # Translations
55
+ *.mo
56
+ *.pot
57
+
58
+ # Django stuff:
59
+ *.log
60
+ local_settings.py
61
+ db.sqlite3
62
+ db.sqlite3-journal
63
+
64
+ # Flask stuff:
65
+ instance/
66
+ .webassets-cache
67
+
68
+ # Scrapy stuff:
69
+ .scrapy
70
+
71
+ # Sphinx documentation
72
+ docs/_build/
73
+
74
+ # PyBuilder
75
+ .pybuilder/
76
+ target/
77
+
78
+ # Jupyter Notebook
79
+ .ipynb_checkpoints
80
+
81
+ # IPython
82
+ profile_default/
83
+ ipython_config.py
84
+
85
+ # pyenv
86
+ # For a library or package, you might want to ignore these files since the code is
87
+ # intended to run in multiple environments; otherwise, check them in:
88
+ # .python-version
89
+
90
+ # pipenv
91
+ # According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
92
+ # However, in case of collaboration, if having platform-specific dependencies or dependencies
93
+ # having no cross-platform support, pipenv may install dependencies that don't work, or not
94
+ # install all needed dependencies.
95
+ #Pipfile.lock
96
+
97
+ # poetry
98
+ # Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
99
+ # This is especially recommended for binary packages to ensure reproducibility, and is more
100
+ # commonly ignored for libraries.
101
+ # https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
102
+ #poetry.lock
103
+
104
+ # pdm
105
+ # Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control.
106
+ #pdm.lock
107
+ # pdm stores project-wide configurations in .pdm.toml, but it is recommended to not include it
108
+ # in version control.
109
+ # https://pdm.fming.dev/latest/usage/project/#working-with-version-control
110
+ .pdm.toml
111
+ .pdm-python
112
+ .pdm-build/
113
+
114
+ # PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm
115
+ __pypackages__/
116
+
117
+ # Celery stuff
118
+ celerybeat-schedule
119
+ celerybeat.pid
120
+
121
+ # SageMath parsed files
122
+ *.sage.py
123
+
124
+ # Environments
125
+ .env
126
+ .venv
127
+ env/
128
+ venv/
129
+ ENV/
130
+ env.bak/
131
+ venv.bak/
132
+
133
+ # Spyder project settings
134
+ .spyderproject
135
+ .spyproject
136
+
137
+ # Rope project settings
138
+ .ropeproject
139
+
140
+ # mkdocs documentation
141
+ /site
142
+
143
+ # mypy
144
+ .mypy_cache/
145
+ .dmypy.json
146
+ dmypy.json
147
+
148
+ # Pyre type checker
149
+ .pyre/
150
+
151
+ # pytype static type analyzer
152
+ .pytype/
153
+
154
+ # Cython debug symbols
155
+ cython_debug/
156
+
157
+ # PyCharm
158
+ # JetBrains specific template is maintained in a separate JetBrains.gitignore that can
159
+ # be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
160
+ # and can be added to the global gitignore or merged into this file. For a more nuclear
161
+ # option (not recommended) you can uncomment the following to ignore the entire idea folder.
162
+ #.idea/
163
+
164
+ # myfile
165
+ .results/
166
+ local.ipynb
167
+ convert_to_safetensor.py
168
+ ttt.ipynb
169
+ imgs/ttt/
170
+ *.bak
LICENSE ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ MIT License
2
+
3
+ Copyright (c) 2024 VectorSpaceLab
4
+
5
+ Permission is hereby granted, free of charge, to any person obtaining a copy
6
+ of this software and associated documentation files (the "Software"), to deal
7
+ in the Software without restriction, including without limitation the rights
8
+ to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9
+ copies of the Software, and to permit persons to whom the Software is
10
+ furnished to do so, subject to the following conditions:
11
+
12
+ The above copyright notice and this permission notice shall be included in all
13
+ copies or substantial portions of the Software.
14
+
15
+ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
+ IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
+ FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18
+ AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19
+ LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20
+ OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21
+ SOFTWARE.
OmniGen/__init__.py ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ from .model import OmniGen
2
+ from .processor import OmniGenProcessor
3
+ from .scheduler import OmniGenScheduler
4
+ from .pipeline import OmniGenPipeline
OmniGen/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (320 Bytes). View file
 
OmniGen/__pycache__/model.cpython-310.pyc ADDED
Binary file (14.4 kB). View file
 
OmniGen/__pycache__/pipeline.cpython-310.pyc ADDED
Binary file (8.89 kB). View file
 
OmniGen/__pycache__/processor.cpython-310.pyc ADDED
Binary file (11.2 kB). View file
 
OmniGen/__pycache__/scheduler.cpython-310.pyc ADDED
Binary file (2.74 kB). View file
 
OmniGen/__pycache__/transformer.cpython-310.pyc ADDED
Binary file (3.94 kB). View file
 
OmniGen/__pycache__/utils.cpython-310.pyc ADDED
Binary file (3.52 kB). View file
 
OmniGen/model.py ADDED
@@ -0,0 +1,468 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # The code is revised from DiT
2
+ import os
3
+ import torch
4
+ import torch.nn as nn
5
+ import numpy as np
6
+ import math
7
+ from typing import Dict
8
+ import torch.nn.functional as F
9
+
10
+ from diffusers.loaders import PeftAdapterMixin
11
+ from timm.models.vision_transformer import PatchEmbed, Attention, Mlp
12
+ from huggingface_hub import snapshot_download
13
+ from safetensors.torch import load_file
14
+
15
+ from OmniGen.transformer import Phi3Config, Phi3Transformer
16
+
17
+
18
+ def modulate(x, shift, scale):
19
+ return x * (1 + scale.unsqueeze(1)) + shift.unsqueeze(1)
20
+
21
+
22
+ class TimestepEmbedder(nn.Module):
23
+ """
24
+ Embeds scalar timesteps into vector representations.
25
+ """
26
+ def __init__(self, hidden_size, frequency_embedding_size=256):
27
+ super().__init__()
28
+ self.mlp = nn.Sequential(
29
+ nn.Linear(frequency_embedding_size, hidden_size, bias=True),
30
+ nn.SiLU(),
31
+ nn.Linear(hidden_size, hidden_size, bias=True),
32
+ )
33
+ self.frequency_embedding_size = frequency_embedding_size
34
+
35
+ @staticmethod
36
+ def timestep_embedding(t, dim, max_period=10000):
37
+ """
38
+ Create sinusoidal timestep embeddings.
39
+ :param t: a 1-D Tensor of N indices, one per batch element.
40
+ These may be fractional.
41
+ :param dim: the dimension of the output.
42
+ :param max_period: controls the minimum frequency of the embeddings.
43
+ :return: an (N, D) Tensor of positional embeddings.
44
+ """
45
+ # https://github.com/openai/glide-text2im/blob/main/glide_text2im/nn.py
46
+ half = dim // 2
47
+ freqs = torch.exp(
48
+ -math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half
49
+ ).to(device=t.device)
50
+ args = t[:, None].float() * freqs[None]
51
+ embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
52
+ if dim % 2:
53
+ embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
54
+ return embedding
55
+
56
+ def forward(self, t, dtype=torch.float32):
57
+ t_freq = self.timestep_embedding(t, self.frequency_embedding_size).to(dtype)
58
+ t_emb = self.mlp(t_freq)
59
+ return t_emb
60
+
61
+
62
+ class FinalLayer(nn.Module):
63
+ """
64
+ The final layer of DiT.
65
+ """
66
+ def __init__(self, hidden_size, patch_size, out_channels):
67
+ super().__init__()
68
+ self.norm_final = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
69
+ self.linear = nn.Linear(hidden_size, patch_size * patch_size * out_channels, bias=True)
70
+ self.adaLN_modulation = nn.Sequential(
71
+ nn.SiLU(),
72
+ nn.Linear(hidden_size, 2 * hidden_size, bias=True)
73
+ )
74
+
75
+ def forward(self, x, c):
76
+ shift, scale = self.adaLN_modulation(c).chunk(2, dim=1)
77
+ x = modulate(self.norm_final(x), shift, scale)
78
+ x = self.linear(x)
79
+ return x
80
+
81
+
82
+ def get_2d_sincos_pos_embed(embed_dim, grid_size, cls_token=False, extra_tokens=0, interpolation_scale=1.0, base_size=1):
83
+ """
84
+ grid_size: int of the grid height and width return: pos_embed: [grid_size*grid_size, embed_dim] or
85
+ [1+grid_size*grid_size, embed_dim] (w/ or w/o cls_token)
86
+ """
87
+ if isinstance(grid_size, int):
88
+ grid_size = (grid_size, grid_size)
89
+
90
+ grid_h = np.arange(grid_size[0], dtype=np.float32) / (grid_size[0] / base_size) / interpolation_scale
91
+ grid_w = np.arange(grid_size[1], dtype=np.float32) / (grid_size[1] / base_size) / interpolation_scale
92
+ grid = np.meshgrid(grid_w, grid_h) # here w goes first
93
+ grid = np.stack(grid, axis=0)
94
+
95
+ grid = grid.reshape([2, 1, grid_size[1], grid_size[0]])
96
+ pos_embed = get_2d_sincos_pos_embed_from_grid(embed_dim, grid)
97
+ if cls_token and extra_tokens > 0:
98
+ pos_embed = np.concatenate([np.zeros([extra_tokens, embed_dim]), pos_embed], axis=0)
99
+ return pos_embed
100
+
101
+
102
+ def get_2d_sincos_pos_embed_from_grid(embed_dim, grid):
103
+ assert embed_dim % 2 == 0
104
+
105
+ # use half of dimensions to encode grid_h
106
+ emb_h = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[0]) # (H*W, D/2)
107
+ emb_w = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[1]) # (H*W, D/2)
108
+
109
+ emb = np.concatenate([emb_h, emb_w], axis=1) # (H*W, D)
110
+ return emb
111
+
112
+
113
+ def get_1d_sincos_pos_embed_from_grid(embed_dim, pos):
114
+ """
115
+ embed_dim: output dimension for each position
116
+ pos: a list of positions to be encoded: size (M,)
117
+ out: (M, D)
118
+ """
119
+ assert embed_dim % 2 == 0
120
+ omega = np.arange(embed_dim // 2, dtype=np.float64)
121
+ omega /= embed_dim / 2.
122
+ omega = 1. / 10000**omega # (D/2,)
123
+
124
+ pos = pos.reshape(-1) # (M,)
125
+ out = np.einsum('m,d->md', pos, omega) # (M, D/2), outer product
126
+
127
+ emb_sin = np.sin(out) # (M, D/2)
128
+ emb_cos = np.cos(out) # (M, D/2)
129
+
130
+ emb = np.concatenate([emb_sin, emb_cos], axis=1) # (M, D)
131
+ return emb
132
+
133
+
134
+ class PatchEmbedMR(nn.Module):
135
+ """ 2D Image to Patch Embedding
136
+ """
137
+ def __init__(
138
+ self,
139
+ patch_size: int = 2,
140
+ in_chans: int = 4,
141
+ embed_dim: int = 768,
142
+ bias: bool = True,
143
+ ):
144
+ super().__init__()
145
+ self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size, bias=bias)
146
+
147
+ def forward(self, x):
148
+ x = self.proj(x)
149
+ x = x.flatten(2).transpose(1, 2) # NCHW -> NLC
150
+ return x
151
+
152
+
153
+ class Int8Quantized(nn.Module):
154
+ def __init__(self, tensor, scale_factor=None):
155
+ super().__init__()
156
+ if scale_factor is None:
157
+ max_val = torch.max(torch.abs(tensor))
158
+ scale_factor = max_val / 127.0
159
+ # Store quantized weights and scale factor
160
+ self.register_buffer('quantized_weight', torch.round(tensor / scale_factor).to(torch.int8))
161
+ self.register_buffer('scale_factor', torch.tensor(scale_factor))
162
+
163
+ def forward(self, dtype=None):
164
+ # Dequantize and convert to specified dtype
165
+ weight = self.quantized_weight.float() * self.scale_factor
166
+ if dtype is not None:
167
+ weight = weight.to(dtype)
168
+ return weight
169
+
170
+
171
+
172
+ class QuantizedLinear(nn.Module):
173
+ def __init__(self, weight, bias=None):
174
+ super().__init__()
175
+ self.weight_quantized = Int8Quantized(weight)
176
+ if bias is not None:
177
+ self.register_buffer('bias', bias)
178
+ else:
179
+ self.bias = None
180
+
181
+ def forward(self, x):
182
+ # Dequantize weight to match input dtype
183
+ weight = self.weight_quantized(dtype=x.dtype)
184
+ return F.linear(x, weight, self.bias)
185
+
186
+
187
+ class OmniGen(nn.Module, PeftAdapterMixin):
188
+ """
189
+ Diffusion model with a Transformer backbone.
190
+ """
191
+ def __init__(
192
+ self,
193
+ transformer_config: Phi3Config,
194
+ patch_size=2,
195
+ in_channels=4,
196
+ pe_interpolation: float = 1.0,
197
+ pos_embed_max_size: int = 192,
198
+ ):
199
+ super().__init__()
200
+
201
+ self.in_channels = in_channels
202
+ self.out_channels = in_channels
203
+ self.patch_size = patch_size
204
+ self.pos_embed_max_size = pos_embed_max_size
205
+
206
+ hidden_size = transformer_config.hidden_size
207
+
208
+ self.x_embedder = PatchEmbedMR(patch_size, in_channels, hidden_size, bias=True)
209
+ self.input_x_embedder = PatchEmbedMR(patch_size, in_channels, hidden_size, bias=True)
210
+
211
+ self.time_token = TimestepEmbedder(hidden_size)
212
+ self.t_embedder = TimestepEmbedder(hidden_size)
213
+
214
+ self.pe_interpolation = pe_interpolation
215
+ pos_embed = get_2d_sincos_pos_embed(hidden_size, pos_embed_max_size, interpolation_scale=self.pe_interpolation, base_size=64)
216
+ self.register_buffer("pos_embed", torch.from_numpy(pos_embed).float().unsqueeze(0), persistent=True)
217
+
218
+ self.final_layer = FinalLayer(hidden_size, patch_size, self.out_channels)
219
+
220
+ self.initialize_weights()
221
+
222
+ self.llm = Phi3Transformer(config=transformer_config)
223
+ self.llm.config.use_cache = False
224
+
225
+ def _quantize_module(self, module):
226
+ """
227
+ Quantize a module to 8-bit precision
228
+ """
229
+ for name, child in module.named_children():
230
+ if isinstance(child, nn.Linear):
231
+ setattr(module, name, QuantizedLinear(child.weight.data, child.bias.data if child.bias is not None else None))
232
+ elif isinstance(child, nn.LayerNorm):
233
+ # Skip quantization for LayerNorm
234
+ continue
235
+ else:
236
+ self._quantize_module(child)
237
+
238
+ @classmethod
239
+ def from_pretrained(cls, model_name, quantize=False): # Add quantize parameter
240
+ if not os.path.exists(model_name):
241
+ cache_folder = os.getenv('HF_HUB_CACHE')
242
+ model_name = snapshot_download(repo_id=model_name,
243
+ cache_dir=cache_folder,
244
+ ignore_patterns=['flax_model.msgpack', 'rust_model.ot', 'tf_model.h5'])
245
+ config = Phi3Config.from_pretrained(model_name)
246
+ model = cls(config)
247
+ if os.path.exists(os.path.join(model_name, 'model.safetensors')):
248
+ print("Loading safetensors")
249
+ ckpt = load_file(os.path.join(model_name, 'model.safetensors'))
250
+ else:
251
+ ckpt = torch.load(os.path.join(model_name, 'model.pt'), map_location='cpu')
252
+
253
+ # Load weights first
254
+ model.load_state_dict(ckpt)
255
+
256
+ # Only quantize if explicitly requested
257
+ if quantize:
258
+ print("Quantizing weights to 8-bit...")
259
+ model._quantize_module(model.llm)
260
+
261
+ return model
262
+ def initialize_weights(self):
263
+ assert not hasattr(self, "llama")
264
+
265
+ # Initialize transformer layers:
266
+ def _basic_init(module):
267
+ if isinstance(module, nn.Linear):
268
+ torch.nn.init.xavier_uniform_(module.weight)
269
+ if module.bias is not None:
270
+ nn.init.constant_(module.bias, 0)
271
+ self.apply(_basic_init)
272
+
273
+ # Initialize patch_embed like nn.Linear (instead of nn.Conv2d):
274
+ w = self.x_embedder.proj.weight.data
275
+ nn.init.xavier_uniform_(w.view([w.shape[0], -1]))
276
+ nn.init.constant_(self.x_embedder.proj.bias, 0)
277
+
278
+ w = self.input_x_embedder.proj.weight.data
279
+ nn.init.xavier_uniform_(w.view([w.shape[0], -1]))
280
+ nn.init.constant_(self.x_embedder.proj.bias, 0)
281
+
282
+
283
+ # Initialize timestep embedding MLP:
284
+ nn.init.normal_(self.t_embedder.mlp[0].weight, std=0.02)
285
+ nn.init.normal_(self.t_embedder.mlp[2].weight, std=0.02)
286
+ nn.init.normal_(self.time_token.mlp[0].weight, std=0.02)
287
+ nn.init.normal_(self.time_token.mlp[2].weight, std=0.02)
288
+
289
+ # Zero-out output layers:
290
+ nn.init.constant_(self.final_layer.adaLN_modulation[-1].weight, 0)
291
+ nn.init.constant_(self.final_layer.adaLN_modulation[-1].bias, 0)
292
+ nn.init.constant_(self.final_layer.linear.weight, 0)
293
+ nn.init.constant_(self.final_layer.linear.bias, 0)
294
+
295
+ def unpatchify(self, x, h, w):
296
+ """
297
+ x: (N, T, patch_size**2 * C)
298
+ imgs: (N, H, W, C)
299
+ """
300
+ c = self.out_channels
301
+
302
+ x = x.reshape(shape=(x.shape[0], h//self.patch_size, w//self.patch_size, self.patch_size, self.patch_size, c))
303
+ x = torch.einsum('nhwpqc->nchpwq', x)
304
+ imgs = x.reshape(shape=(x.shape[0], c, h, w))
305
+ return imgs
306
+
307
+
308
+ def cropped_pos_embed(self, height, width):
309
+ """Crops positional embeddings for SD3 compatibility."""
310
+ if self.pos_embed_max_size is None:
311
+ raise ValueError("`pos_embed_max_size` must be set for cropping.")
312
+
313
+ height = height // self.patch_size
314
+ width = width // self.patch_size
315
+ if height > self.pos_embed_max_size:
316
+ raise ValueError(
317
+ f"Height ({height}) cannot be greater than `pos_embed_max_size`: {self.pos_embed_max_size}."
318
+ )
319
+ if width > self.pos_embed_max_size:
320
+ raise ValueError(
321
+ f"Width ({width}) cannot be greater than `pos_embed_max_size`: {self.pos_embed_max_size}."
322
+ )
323
+
324
+ top = (self.pos_embed_max_size - height) // 2
325
+ left = (self.pos_embed_max_size - width) // 2
326
+ spatial_pos_embed = self.pos_embed.reshape(1, self.pos_embed_max_size, self.pos_embed_max_size, -1)
327
+ spatial_pos_embed = spatial_pos_embed[:, top : top + height, left : left + width, :]
328
+ # print(top, top + height, left, left + width, spatial_pos_embed.size())
329
+ spatial_pos_embed = spatial_pos_embed.reshape(1, -1, spatial_pos_embed.shape[-1])
330
+ return spatial_pos_embed
331
+
332
+
333
+ def patch_multiple_resolutions(self, latents, padding_latent=None, is_input_images:bool=False):
334
+ if isinstance(latents, list):
335
+ return_list = False
336
+ if padding_latent is None:
337
+ padding_latent = [None] * len(latents)
338
+ return_list = True
339
+ patched_latents, num_tokens, shapes = [], [], []
340
+ for latent, padding in zip(latents, padding_latent):
341
+ height, width = latent.shape[-2:]
342
+ if is_input_images:
343
+ latent = self.input_x_embedder(latent)
344
+ else:
345
+ latent = self.x_embedder(latent)
346
+ pos_embed = self.cropped_pos_embed(height, width)
347
+ latent = latent + pos_embed
348
+ if padding is not None:
349
+ latent = torch.cat([latent, padding], dim=-2)
350
+ patched_latents.append(latent)
351
+
352
+ num_tokens.append(pos_embed.size(1))
353
+ shapes.append([height, width])
354
+ if not return_list:
355
+ latents = torch.cat(patched_latents, dim=0)
356
+ else:
357
+ latents = patched_latents
358
+ else:
359
+ height, width = latents.shape[-2:]
360
+ if is_input_images:
361
+ latents = self.input_x_embedder(latents)
362
+ else:
363
+ latents = self.x_embedder(latents)
364
+ pos_embed = self.cropped_pos_embed(height, width)
365
+ latents = latents + pos_embed
366
+ num_tokens = latents.size(1)
367
+ shapes = [height, width]
368
+ return latents, num_tokens, shapes
369
+
370
+
371
+ def forward(self, x, timestep, input_ids, input_img_latents, input_image_sizes, attention_mask, position_ids, padding_latent=None, past_key_values=None, return_past_key_values=True):
372
+ """
373
+
374
+ """
375
+ input_is_list = isinstance(x, list)
376
+ x, num_tokens, shapes = self.patch_multiple_resolutions(x, padding_latent)
377
+ time_token = self.time_token(timestep, dtype=x[0].dtype).unsqueeze(1)
378
+
379
+ if input_img_latents is not None:
380
+ input_latents, _, _ = self.patch_multiple_resolutions(input_img_latents, is_input_images=True)
381
+ if input_ids is not None:
382
+ condition_embeds = self.llm.embed_tokens(input_ids).clone()
383
+ input_img_inx = 0
384
+ for b_inx in input_image_sizes.keys():
385
+ for start_inx, end_inx in input_image_sizes[b_inx]:
386
+ condition_embeds[b_inx, start_inx: end_inx] = input_latents[input_img_inx]
387
+ input_img_inx += 1
388
+ if input_img_latents is not None:
389
+ assert input_img_inx == len(input_latents)
390
+
391
+ input_emb = torch.cat([condition_embeds, time_token, x], dim=1)
392
+ else:
393
+ input_emb = torch.cat([time_token, x], dim=1)
394
+ output = self.llm(inputs_embeds=input_emb, attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values)
395
+ output, past_key_values = output.last_hidden_state, output.past_key_values
396
+ if input_is_list:
397
+ image_embedding = output[:, -max(num_tokens):]
398
+ time_emb = self.t_embedder(timestep, dtype=x.dtype)
399
+ x = self.final_layer(image_embedding, time_emb)
400
+ latents = []
401
+ for i in range(x.size(0)):
402
+ latent = x[i:i+1, :num_tokens[i]]
403
+ latent = self.unpatchify(latent, shapes[i][0], shapes[i][1])
404
+ latents.append(latent)
405
+ else:
406
+ image_embedding = output[:, -num_tokens:]
407
+ time_emb = self.t_embedder(timestep, dtype=x.dtype)
408
+ x = self.final_layer(image_embedding, time_emb)
409
+ latents = self.unpatchify(x, shapes[0], shapes[1])
410
+
411
+ if return_past_key_values:
412
+ return latents, past_key_values
413
+ return latents
414
+
415
+ @torch.no_grad()
416
+ def forward_with_cfg(self, x, timestep, input_ids, input_img_latents, input_image_sizes, attention_mask, position_ids, cfg_scale, use_img_cfg, img_cfg_scale, past_key_values, use_kv_cache):
417
+ """
418
+ Forward pass of DiT, but also batches the unconditional forward pass for classifier-free guidance.
419
+ """
420
+ self.llm.config.use_cache = use_kv_cache
421
+ model_out, past_key_values = self.forward(x, timestep, input_ids, input_img_latents, input_image_sizes, attention_mask, position_ids, past_key_values=past_key_values, return_past_key_values=True)
422
+ if use_img_cfg:
423
+ cond, uncond, img_cond = torch.split(model_out, len(model_out) // 3, dim=0)
424
+ cond = uncond + img_cfg_scale * (img_cond - uncond) + cfg_scale * (cond - img_cond)
425
+ model_out = [cond, cond, cond]
426
+ else:
427
+ cond, uncond = torch.split(model_out, len(model_out) // 2, dim=0)
428
+ cond = uncond + cfg_scale * (cond - uncond)
429
+ model_out = [cond, cond]
430
+
431
+ return torch.cat(model_out, dim=0), past_key_values
432
+
433
+
434
+ @torch.no_grad()
435
+ def forward_with_separate_cfg(self, x, timestep, input_ids, input_img_latents, input_image_sizes, attention_mask, position_ids, cfg_scale, use_img_cfg, img_cfg_scale, past_key_values, use_kv_cache, return_past_key_values=True):
436
+ """
437
+ Forward pass of DiT, but also batches the unconditional forward pass for classifier-free guidance.
438
+ """
439
+ self.llm.config.use_cache = use_kv_cache
440
+ if past_key_values is None:
441
+ past_key_values = [None] * len(attention_mask)
442
+
443
+ x = torch.split(x, len(x) // len(attention_mask), dim=0)
444
+ timestep = timestep.to(x[0].dtype)
445
+ timestep = torch.split(timestep, len(timestep) // len(input_ids), dim=0)
446
+
447
+ model_out, pask_key_values = [], []
448
+ for i in range(len(input_ids)):
449
+ temp_out, temp_pask_key_values = self.forward(x[i], timestep[i], input_ids[i], input_img_latents[i], input_image_sizes[i], attention_mask[i], position_ids[i], past_key_values[i])
450
+ model_out.append(temp_out)
451
+ pask_key_values.append(temp_pask_key_values)
452
+
453
+ if len(model_out) == 3:
454
+ cond, uncond, img_cond = model_out
455
+ cond = uncond + img_cfg_scale * (img_cond - uncond) + cfg_scale * (cond - img_cond)
456
+ model_out = [cond, cond, cond]
457
+ elif len(model_out) == 2:
458
+ cond, uncond = model_out
459
+ cond = uncond + cfg_scale * (cond - uncond)
460
+ model_out = [cond, cond]
461
+ else:
462
+ return model_out[0]
463
+
464
+ return torch.cat(model_out, dim=0), pask_key_values
465
+
466
+
467
+
468
+
OmniGen/pipeline.py ADDED
@@ -0,0 +1,289 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import inspect
3
+ from typing import Any, Callable, Dict, List, Optional, Union
4
+
5
+ from PIL import Image
6
+ import numpy as np
7
+ import torch
8
+ from huggingface_hub import snapshot_download
9
+ from peft import LoraConfig, PeftModel
10
+ from diffusers.models import AutoencoderKL
11
+ from diffusers.utils import (
12
+ USE_PEFT_BACKEND,
13
+ is_torch_xla_available,
14
+ logging,
15
+ replace_example_docstring,
16
+ scale_lora_layers,
17
+ unscale_lora_layers,
18
+ )
19
+ from safetensors.torch import load_file
20
+
21
+ from OmniGen import OmniGen, OmniGenProcessor, OmniGenScheduler
22
+
23
+ import gc # For clearing unused objects
24
+
25
+ logger = logging.get_logger(__name__)
26
+
27
+ EXAMPLE_DOC_STRING = """
28
+ Examples:
29
+ ```py
30
+ >>> from OmniGen import OmniGenPipeline
31
+ >>> pipe = FluxControlNetPipeline.from_pretrained(
32
+ ... base_model
33
+ ... )
34
+ >>> prompt = "A woman holds a bouquet of flowers and faces the camera"
35
+ >>> image = pipe(
36
+ ... prompt,
37
+ ... guidance_scale=3.0,
38
+ ... num_inference_steps=50,
39
+ ... ).images[0]
40
+ >>> image.save("t2i.png")
41
+ ```
42
+ """
43
+
44
+ class OmniGenPipeline:
45
+ def __init__(
46
+ self,
47
+ vae: AutoencoderKL,
48
+ model: OmniGen,
49
+ processor: OmniGenProcessor,
50
+
51
+ ):
52
+ self.vae = vae
53
+ self.model = model
54
+ self.processor = processor
55
+
56
+ self.device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
57
+ self.model.to(self.device)
58
+ self.model.eval()
59
+ self.vae.to(self.device)
60
+
61
+ @classmethod
62
+ def from_pretrained(cls, model_name, vae_path: str=None, Quantization: bool=False):
63
+ if not os.path.exists(model_name) or (not os.path.exists(os.path.join(model_name, 'model.safetensors')) and model_name == "Shitao/OmniGen-v1"):
64
+ logger.info("Model not found, downloading...")
65
+ cache_folder = os.getenv('HF_HUB_CACHE')
66
+ model_name = snapshot_download(repo_id=model_name,
67
+ cache_dir=cache_folder,
68
+ ignore_patterns=['flax_model.msgpack', 'rust_model.ot', 'tf_model.h5', 'model.pt'])
69
+ logger.info(f"Downloaded model to {model_name}")
70
+
71
+ # Pass Quantization parameter to OmniGen's from_pretrained
72
+ model = OmniGen.from_pretrained(model_name, quantize=Quantization)
73
+
74
+ processor = OmniGenProcessor.from_pretrained(model_name)
75
+
76
+ if os.path.exists(os.path.join(model_name, "vae")):
77
+ vae = AutoencoderKL.from_pretrained(os.path.join(model_name, "vae"))
78
+ elif vae_path is not None:
79
+ vae = AutoencoderKL.from_pretrained(vae_path)
80
+ else:
81
+ logger.info(f"No VAE found in {model_name}, downloading stabilityai/sdxl-vae from HF")
82
+ vae = AutoencoderKL.from_pretrained("stabilityai/sdxl-vae")
83
+
84
+ return cls(vae, model, processor)
85
+
86
+
87
+
88
+ def merge_lora(self, lora_path: str):
89
+ model = PeftModel.from_pretrained(self.model, lora_path)
90
+ model.merge_and_unload()
91
+
92
+ self.model = model
93
+
94
+ def to(self, device: Union[str, torch.device]):
95
+ if isinstance(device, str):
96
+ device = torch.device(device)
97
+ self.model.to(device)
98
+ self.vae.to(device)
99
+
100
+ def vae_encode(self, x, dtype):
101
+ if self.vae.config.shift_factor is not None:
102
+ x = self.vae.encode(x).latent_dist.sample()
103
+ x = (x - self.vae.config.shift_factor) * self.vae.config.scaling_factor
104
+ else:
105
+ x = self.vae.encode(x).latent_dist.sample().mul_(self.vae.config.scaling_factor)
106
+ x = x.to(dtype)
107
+ return x
108
+
109
+ def move_to_device(self, data):
110
+ if isinstance(data, list):
111
+ return [x.to(self.device) for x in data]
112
+ return data.to(self.device)
113
+
114
+
115
+ @torch.no_grad()
116
+ @replace_example_docstring(EXAMPLE_DOC_STRING)
117
+ def __call__(
118
+ self,
119
+ prompt: Union[str, List[str]],
120
+ input_images: Union[List[str], List[List[str]]] = None,
121
+ height: int = 1024,
122
+ width: int = 1024,
123
+ num_inference_steps: int = 50,
124
+ guidance_scale: float = 3,
125
+ use_img_guidance: bool = True,
126
+ img_guidance_scale: float = 1.6,
127
+ separate_cfg_infer: bool = False,
128
+ use_kv_cache: bool = True,
129
+ dtype: torch.dtype = torch.bfloat16,
130
+ seed: int = None,
131
+ Quantization: bool = False,
132
+ ):
133
+
134
+ r"""
135
+ Function invoked when calling the pipeline for generation.
136
+
137
+ Args:
138
+ prompt (`str` or `List[str]`):
139
+ The prompt or prompts to guide the image generation.
140
+ input_images (`List[str]` or `List[List[str]]`, *optional*):
141
+ The list of input images. We will replace the "<|image_i|>" in prompt with the 1-th image in list.
142
+ height (`int`, *optional*, defaults to 1024):
143
+ The height in pixels of the generated image. The number must be a multiple of 16.
144
+ width (`int`, *optional*, defaults to 1024):
145
+ The width in pixels of the generated image. The number must be a multiple of 16.
146
+ num_inference_steps (`int`, *optional*, defaults to 50):
147
+ The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference.
148
+ guidance_scale (`float`, *optional*, defaults to 4.0):
149
+ Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
150
+ `guidance_scale` is defined as `w` of equation 2. of [Imagen
151
+ Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
152
+ 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
153
+ usually at the expense of lower image quality.
154
+ use_img_guidance (`bool`, *optional*, defaults to True):
155
+ Defined as equation 3 in [Instrucpix2pix](https://arxiv.org/pdf/2211.09800).
156
+ img_guidance_scale (`float`, *optional*, defaults to 1.6):
157
+ Defined as equation 3 in [Instrucpix2pix](https://arxiv.org/pdf/2211.09800).
158
+ separate_cfg_infer (`bool`, *optional*, defaults to False):
159
+ Perform inference on images with different guidance separately; this can save memory when generating images of large size at the expense of slower inference.
160
+ use_kv_cache (`bool`, *optional*, defaults to True): enable kv cache to speed up the inference
161
+ generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
162
+ One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
163
+ to make generation deterministic.
164
+ Examples:
165
+
166
+ Returns:
167
+ A list with the generated images.
168
+ """
169
+
170
+
171
+ assert height%16 == 0 and width%16 == 0
172
+ if separate_cfg_infer:
173
+ use_kv_cache = False
174
+ # raise "Currently, don't support both use_kv_cache and separate_cfg_infer"
175
+ if input_images is None:
176
+ use_img_guidance = False
177
+ if isinstance(prompt, str):
178
+ prompt = [prompt]
179
+ input_images = [input_images] if input_images is not None else None
180
+
181
+
182
+ input_data = self.processor(prompt, input_images, height=height, width=width, use_img_cfg=use_img_guidance, separate_cfg_input=separate_cfg_infer)
183
+
184
+ num_prompt = len(prompt)
185
+ num_cfg = 2 if use_img_guidance else 1
186
+ latent_size_h, latent_size_w = height // 8, width // 8
187
+
188
+ if seed is not None:
189
+ generator = torch.Generator(device=self.device).manual_seed(seed)
190
+ else:
191
+ generator = None
192
+ latents = torch.randn(num_prompt, 4, latent_size_h, latent_size_w, device=self.device, generator=generator)
193
+ latents = torch.cat([latents] * (1 + num_cfg), 0).to(dtype)
194
+
195
+
196
+ # Load VAE into VRAM (GPU) in bfloat16
197
+ self.vae.to(self.device, dtype=torch.bfloat16)
198
+
199
+
200
+
201
+
202
+ input_img_latents = []
203
+ if separate_cfg_infer:
204
+ for temp_pixel_values in input_data['input_pixel_values']:
205
+ temp_input_latents = []
206
+ for img in temp_pixel_values:
207
+ img = self.vae_encode(img.to(self.device, dtype=torch.bfloat16), dtype)
208
+
209
+ temp_input_latents.append(img)
210
+ input_img_latents.append(temp_input_latents)
211
+ else:
212
+ for img in input_data['input_pixel_values']:
213
+ img = self.vae_encode(img.to(self.device, dtype=torch.bfloat16), dtype)
214
+
215
+ input_img_latents.append(img)
216
+
217
+
218
+
219
+ model_kwargs = dict(input_ids=self.move_to_device(input_data['input_ids']),
220
+ input_img_latents=input_img_latents,
221
+ input_image_sizes=input_data['input_image_sizes'],
222
+ attention_mask=self.move_to_device(input_data["attention_mask"]),
223
+ position_ids=self.move_to_device(input_data["position_ids"]),
224
+ cfg_scale=guidance_scale,
225
+ img_cfg_scale=img_guidance_scale,
226
+ use_img_cfg=use_img_guidance,
227
+ use_kv_cache=use_kv_cache)
228
+
229
+
230
+ #unlode vae to cpu
231
+ self.vae.to('cpu')
232
+ torch.cuda.empty_cache() # Clear VRAM
233
+ gc.collect() # Run garbage collection to free system RAM
234
+
235
+
236
+
237
+ if separate_cfg_infer:
238
+ func = self.model.forward_with_separate_cfg
239
+ else:
240
+ func = self.model.forward_with_cfg
241
+
242
+
243
+ #move main model to gpu
244
+ self.model.to(self.device, dtype=dtype)
245
+
246
+
247
+ scheduler = OmniGenScheduler(num_steps=num_inference_steps)
248
+ samples = scheduler(latents, func, model_kwargs, use_kv_cache=use_kv_cache)
249
+ samples = samples.chunk((1 + num_cfg), dim=0)[0]
250
+
251
+ if self.vae.config.shift_factor is not None:
252
+ samples = samples / self.vae.config.scaling_factor + self.vae.config.shift_factor
253
+ else:
254
+ samples = samples / self.vae.config.scaling_factor
255
+
256
+ #unlode main model to cpu
257
+ self.model.to('cpu')
258
+ torch.cuda.empty_cache() # Clear VRAM
259
+ gc.collect() # Run garbage collection to free system RAM
260
+
261
+ # Move samples to GPU and ensure they are in bfloat16 (for the VAE)
262
+ samples = samples.to(self.device, dtype=torch.bfloat16)
263
+
264
+ # Load VAE into VRAM (GPU) in bfloat16
265
+ self.vae.to(self.device, dtype=torch.bfloat16)
266
+
267
+ # Decode the samples using the VAE
268
+ samples = self.vae.decode(samples).sample
269
+
270
+ #unlode vae to cpu
271
+ self.vae.to('cpu')
272
+ torch.cuda.empty_cache() # Clear VRAM
273
+ gc.collect() # Run garbage collection to free system RAM
274
+
275
+
276
+ # Convert samples back to float32 for further processing
277
+ samples = samples.to(torch.float32)
278
+
279
+
280
+ # Convert samples to uint8 for final image output
281
+ output_samples = (samples * 0.5 + 0.5).clamp(0, 1) * 255
282
+ output_samples = output_samples.permute(0, 2, 3, 1).to("cpu", dtype=torch.uint8).numpy()
283
+ # Create output images
284
+ output_images = []
285
+ for i, sample in enumerate(output_samples):
286
+ output_images.append(Image.fromarray(sample))
287
+
288
+ # Return the generated images
289
+ return output_images
OmniGen/processor.py ADDED
@@ -0,0 +1,335 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import re
3
+ from typing import Dict, List
4
+ import json
5
+
6
+ import torch
7
+ import numpy as np
8
+ import random
9
+ from PIL import Image
10
+ from torchvision import transforms
11
+ from transformers import AutoTokenizer
12
+ from huggingface_hub import snapshot_download
13
+
14
+ from OmniGen.utils import (
15
+ create_logger,
16
+ update_ema,
17
+ requires_grad,
18
+ center_crop_arr,
19
+ crop_arr,
20
+ )
21
+
22
+
23
+
24
+
25
+ class OmniGenProcessor:
26
+ def __init__(self,
27
+ text_tokenizer,
28
+ max_image_size: int=1024):
29
+ self.text_tokenizer = text_tokenizer
30
+ self.max_image_size = max_image_size
31
+
32
+ self.image_transform = transforms.Compose([
33
+ transforms.Lambda(lambda pil_image: crop_arr(pil_image, max_image_size)),
34
+ transforms.ToTensor(),
35
+ transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], inplace=True)
36
+ ])
37
+
38
+ self.collator = OmniGenCollator()
39
+ self.separate_collator = OmniGenSeparateCollator()
40
+
41
+ @classmethod
42
+ def from_pretrained(cls, model_name):
43
+ if not os.path.exists(model_name):
44
+ cache_folder = os.getenv('HF_HUB_CACHE')
45
+ model_name = snapshot_download(repo_id=model_name,
46
+ cache_dir=cache_folder,
47
+ allow_patterns="*.json")
48
+ text_tokenizer = AutoTokenizer.from_pretrained(model_name)
49
+
50
+ return cls(text_tokenizer)
51
+
52
+
53
+ def process_image(self, image):
54
+ image = Image.open(image).convert('RGB')
55
+ return self.image_transform(image)
56
+
57
+ def process_multi_modal_prompt(self, text, input_images):
58
+ text = self.add_prefix_instruction(text)
59
+ if input_images is None or len(input_images) == 0:
60
+ model_inputs = self.text_tokenizer(text)
61
+ return {"input_ids": model_inputs.input_ids, "pixel_values": None, "image_sizes": None}
62
+
63
+ pattern = r"<\|image_\d+\|>"
64
+ prompt_chunks = [self.text_tokenizer(chunk).input_ids for chunk in re.split(pattern, text)]
65
+
66
+ for i in range(1, len(prompt_chunks)):
67
+ if prompt_chunks[i][0] == 1:
68
+ prompt_chunks[i] = prompt_chunks[i][1:]
69
+
70
+ image_tags = re.findall(pattern, text)
71
+ image_ids = [int(s.split("|")[1].split("_")[-1]) for s in image_tags]
72
+
73
+ unique_image_ids = sorted(list(set(image_ids)))
74
+ assert unique_image_ids == list(range(1, len(unique_image_ids)+1)), f"image_ids must start from 1, and must be continuous int, e.g. [1, 2, 3], cannot be {unique_image_ids}"
75
+ # total images must be the same as the number of image tags
76
+ assert len(unique_image_ids) == len(input_images), f"total images must be the same as the number of image tags, got {len(unique_image_ids)} image tags and {len(input_images)} images"
77
+
78
+ input_images = [input_images[x-1] for x in image_ids]
79
+
80
+ all_input_ids = []
81
+ img_inx = []
82
+ idx = 0
83
+ for i in range(len(prompt_chunks)):
84
+ all_input_ids.extend(prompt_chunks[i])
85
+ if i != len(prompt_chunks) -1:
86
+ start_inx = len(all_input_ids)
87
+ size = input_images[i].size(-2) * input_images[i].size(-1) // 16 // 16
88
+ img_inx.append([start_inx, start_inx+size])
89
+ all_input_ids.extend([0]*size)
90
+
91
+ return {"input_ids": all_input_ids, "pixel_values": input_images, "image_sizes": img_inx}
92
+
93
+
94
+ def add_prefix_instruction(self, prompt):
95
+ user_prompt = '<|user|>\n'
96
+ generation_prompt = 'Generate an image according to the following instructions\n'
97
+ assistant_prompt = '<|assistant|>\n<|diffusion|>'
98
+ prompt_suffix = "<|end|>\n"
99
+ prompt = f"{user_prompt}{generation_prompt}{prompt}{prompt_suffix}{assistant_prompt}"
100
+ return prompt
101
+
102
+
103
+ def __call__(self,
104
+ instructions: List[str],
105
+ input_images: List[List[str]] = None,
106
+ height: int = 1024,
107
+ width: int = 1024,
108
+ negative_prompt: str = "low quality, jpeg artifacts, ugly, duplicate, morbid, mutilated, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, mutation, deformed, blurry, dehydrated, bad anatomy, bad proportions, extra limbs, cloned face, disfigured, gross proportions, malformed limbs, missing arms, missing legs, extra arms, extra legs, fused fingers, too many fingers.",
109
+ use_img_cfg: bool = True,
110
+ separate_cfg_input: bool = False,
111
+ ) -> Dict:
112
+
113
+ if input_images is None:
114
+ use_img_cfg = False
115
+ if isinstance(instructions, str):
116
+ instructions = [instructions]
117
+ input_images = [input_images]
118
+
119
+ input_data = []
120
+ for i in range(len(instructions)):
121
+ cur_instruction = instructions[i]
122
+ cur_input_images = None if input_images is None else input_images[i]
123
+ if cur_input_images is not None and len(cur_input_images) > 0:
124
+ cur_input_images = [self.process_image(x) for x in cur_input_images]
125
+ else:
126
+ cur_input_images = None
127
+ assert "<img><|image_1|></img>" not in cur_instruction
128
+
129
+ mllm_input = self.process_multi_modal_prompt(cur_instruction, cur_input_images)
130
+
131
+
132
+ neg_mllm_input, img_cfg_mllm_input = None, None
133
+ neg_mllm_input = self.process_multi_modal_prompt(negative_prompt, None)
134
+ if use_img_cfg:
135
+ if cur_input_images is not None and len(cur_input_images) >= 1:
136
+ img_cfg_prompt = [f"<img><|image_{i+1}|></img>" for i in range(len(cur_input_images))]
137
+ img_cfg_mllm_input = self.process_multi_modal_prompt(" ".join(img_cfg_prompt), cur_input_images)
138
+ else:
139
+ img_cfg_mllm_input = neg_mllm_input
140
+
141
+ input_data.append((mllm_input, neg_mllm_input, img_cfg_mllm_input, [height, width]))
142
+
143
+ if separate_cfg_input:
144
+ return self.separate_collator(input_data)
145
+ return self.collator(input_data)
146
+
147
+
148
+
149
+
150
+ class OmniGenCollator:
151
+ def __init__(self, pad_token_id=2, hidden_size=3072):
152
+ self.pad_token_id = pad_token_id
153
+ self.hidden_size = hidden_size
154
+
155
+ def create_position(self, attention_mask, num_tokens_for_output_images):
156
+ position_ids = []
157
+ text_length = attention_mask.size(-1)
158
+ img_length = max(num_tokens_for_output_images)
159
+ for mask in attention_mask:
160
+ temp_l = torch.sum(mask)
161
+ temp_position = [0]*(text_length-temp_l) + [i for i in range(temp_l+img_length+1)] # we add a time embedding into the sequence, so add one more token
162
+ position_ids.append(temp_position)
163
+ return torch.LongTensor(position_ids)
164
+
165
+ def create_mask(self, attention_mask, num_tokens_for_output_images):
166
+ extended_mask = []
167
+ padding_images = []
168
+ text_length = attention_mask.size(-1)
169
+ img_length = max(num_tokens_for_output_images)
170
+ seq_len = text_length + img_length + 1 # we add a time embedding into the sequence, so add one more token
171
+ inx = 0
172
+ for mask in attention_mask:
173
+ temp_l = torch.sum(mask)
174
+ pad_l = text_length - temp_l
175
+
176
+ temp_mask = torch.tril(torch.ones(size=(temp_l+1, temp_l+1)))
177
+
178
+ image_mask = torch.zeros(size=(temp_l+1, img_length))
179
+ temp_mask = torch.cat([temp_mask, image_mask], dim=-1)
180
+
181
+ image_mask = torch.ones(size=(img_length, temp_l+img_length+1))
182
+ temp_mask = torch.cat([temp_mask, image_mask], dim=0)
183
+
184
+ if pad_l > 0:
185
+ pad_mask = torch.zeros(size=(temp_l+1+img_length, pad_l))
186
+ temp_mask = torch.cat([pad_mask, temp_mask], dim=-1)
187
+
188
+ pad_mask = torch.ones(size=(pad_l, seq_len))
189
+ temp_mask = torch.cat([pad_mask, temp_mask], dim=0)
190
+
191
+ true_img_length = num_tokens_for_output_images[inx]
192
+ pad_img_length = img_length - true_img_length
193
+ if pad_img_length > 0:
194
+ temp_mask[:, -pad_img_length:] = 0
195
+ temp_padding_imgs = torch.zeros(size=(1, pad_img_length, self.hidden_size))
196
+ else:
197
+ temp_padding_imgs = None
198
+
199
+ extended_mask.append(temp_mask.unsqueeze(0))
200
+ padding_images.append(temp_padding_imgs)
201
+ inx += 1
202
+ return torch.cat(extended_mask, dim=0), padding_images
203
+
204
+ def adjust_attention_for_input_images(self, attention_mask, image_sizes):
205
+ for b_inx in image_sizes.keys():
206
+ for start_inx, end_inx in image_sizes[b_inx]:
207
+ attention_mask[b_inx][start_inx:end_inx, start_inx:end_inx] = 1
208
+
209
+ return attention_mask
210
+
211
+ def pad_input_ids(self, input_ids, image_sizes):
212
+ max_l = max([len(x) for x in input_ids])
213
+ padded_ids = []
214
+ attention_mask = []
215
+ new_image_sizes = []
216
+
217
+ for i in range(len(input_ids)):
218
+ temp_ids = input_ids[i]
219
+ temp_l = len(temp_ids)
220
+ pad_l = max_l - temp_l
221
+ if pad_l == 0:
222
+ attention_mask.append([1]*max_l)
223
+ padded_ids.append(temp_ids)
224
+ else:
225
+ attention_mask.append([0]*pad_l+[1]*temp_l)
226
+ padded_ids.append([self.pad_token_id]*pad_l+temp_ids)
227
+
228
+ if i in image_sizes:
229
+ new_inx = []
230
+ for old_inx in image_sizes[i]:
231
+ new_inx.append([x+pad_l for x in old_inx])
232
+ image_sizes[i] = new_inx
233
+
234
+ return torch.LongTensor(padded_ids), torch.LongTensor(attention_mask), image_sizes
235
+
236
+
237
+ def process_mllm_input(self, mllm_inputs, target_img_size):
238
+ num_tokens_for_output_images = []
239
+ for img_size in target_img_size:
240
+ num_tokens_for_output_images.append(img_size[0]*img_size[1]//16//16)
241
+
242
+ pixel_values, image_sizes = [], {}
243
+ b_inx = 0
244
+ for x in mllm_inputs:
245
+ if x['pixel_values'] is not None:
246
+ pixel_values.extend(x['pixel_values'])
247
+ for size in x['image_sizes']:
248
+ if b_inx not in image_sizes:
249
+ image_sizes[b_inx] = [size]
250
+ else:
251
+ image_sizes[b_inx].append(size)
252
+ b_inx += 1
253
+ pixel_values = [x.unsqueeze(0) for x in pixel_values]
254
+
255
+
256
+ input_ids = [x['input_ids'] for x in mllm_inputs]
257
+ padded_input_ids, attention_mask, image_sizes = self.pad_input_ids(input_ids, image_sizes)
258
+ position_ids = self.create_position(attention_mask, num_tokens_for_output_images)
259
+ attention_mask, padding_images = self.create_mask(attention_mask, num_tokens_for_output_images)
260
+ attention_mask = self.adjust_attention_for_input_images(attention_mask, image_sizes)
261
+
262
+ return padded_input_ids, position_ids, attention_mask, padding_images, pixel_values, image_sizes
263
+
264
+
265
+ def __call__(self, features):
266
+ mllm_inputs = [f[0] for f in features]
267
+ cfg_mllm_inputs = [f[1] for f in features]
268
+ img_cfg_mllm_input = [f[2] for f in features]
269
+ target_img_size = [f[3] for f in features]
270
+
271
+
272
+ if img_cfg_mllm_input[0] is not None:
273
+ mllm_inputs = mllm_inputs + cfg_mllm_inputs + img_cfg_mllm_input
274
+ target_img_size = target_img_size + target_img_size + target_img_size
275
+ else:
276
+ mllm_inputs = mllm_inputs + cfg_mllm_inputs
277
+ target_img_size = target_img_size + target_img_size
278
+
279
+
280
+ all_padded_input_ids, all_position_ids, all_attention_mask, all_padding_images, all_pixel_values, all_image_sizes = self.process_mllm_input(mllm_inputs, target_img_size)
281
+
282
+ data = {"input_ids": all_padded_input_ids,
283
+ "attention_mask": all_attention_mask,
284
+ "position_ids": all_position_ids,
285
+ "input_pixel_values": all_pixel_values,
286
+ "input_image_sizes": all_image_sizes,
287
+ "padding_images": all_padding_images,
288
+ }
289
+ return data
290
+
291
+
292
+ class OmniGenSeparateCollator(OmniGenCollator):
293
+ def __call__(self, features):
294
+ mllm_inputs = [f[0] for f in features]
295
+ cfg_mllm_inputs = [f[1] for f in features]
296
+ img_cfg_mllm_input = [f[2] for f in features]
297
+ target_img_size = [f[3] for f in features]
298
+
299
+
300
+ all_padded_input_ids, all_attention_mask, all_position_ids, all_pixel_values, all_image_sizes, all_padding_images = [], [], [], [], [], []
301
+
302
+
303
+ padded_input_ids, position_ids, attention_mask, padding_images, pixel_values, image_sizes = self.process_mllm_input(mllm_inputs, target_img_size)
304
+ all_padded_input_ids.append(padded_input_ids)
305
+ all_attention_mask.append(attention_mask)
306
+ all_position_ids.append(position_ids)
307
+ all_pixel_values.append(pixel_values)
308
+ all_image_sizes.append(image_sizes)
309
+ all_padding_images.append(padding_images)
310
+
311
+ if cfg_mllm_inputs[0] is not None:
312
+ padded_input_ids, position_ids, attention_mask, padding_images, pixel_values, image_sizes = self.process_mllm_input(cfg_mllm_inputs, target_img_size)
313
+ all_padded_input_ids.append(padded_input_ids)
314
+ all_attention_mask.append(attention_mask)
315
+ all_position_ids.append(position_ids)
316
+ all_pixel_values.append(pixel_values)
317
+ all_image_sizes.append(image_sizes)
318
+ all_padding_images.append(padding_images)
319
+ if img_cfg_mllm_input[0] is not None:
320
+ padded_input_ids, position_ids, attention_mask, padding_images, pixel_values, image_sizes = self.process_mllm_input(img_cfg_mllm_input, target_img_size)
321
+ all_padded_input_ids.append(padded_input_ids)
322
+ all_attention_mask.append(attention_mask)
323
+ all_position_ids.append(position_ids)
324
+ all_pixel_values.append(pixel_values)
325
+ all_image_sizes.append(image_sizes)
326
+ all_padding_images.append(padding_images)
327
+
328
+ data = {"input_ids": all_padded_input_ids,
329
+ "attention_mask": all_attention_mask,
330
+ "position_ids": all_position_ids,
331
+ "input_pixel_values": all_pixel_values,
332
+ "input_image_sizes": all_image_sizes,
333
+ "padding_images": all_padding_images,
334
+ }
335
+ return data
OmniGen/scheduler.py ADDED
@@ -0,0 +1,55 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from tqdm import tqdm
3
+ from transformers.cache_utils import Cache, DynamicCache
4
+
5
+ class OmniGenScheduler:
6
+ def __init__(self, num_steps: int=50, time_shifting_factor: int=1):
7
+ self.num_steps = num_steps
8
+ self.time_shift = time_shifting_factor
9
+
10
+ t = torch.linspace(0, 1, num_steps+1)
11
+ t = t / (t + time_shifting_factor - time_shifting_factor * t)
12
+ self.sigma = t
13
+
14
+ def crop_kv_cache(self, past_key_values, num_tokens_for_img):
15
+ crop_past_key_values = ()
16
+ for layer_idx in range(len(past_key_values)):
17
+ key_states, value_states = past_key_values[layer_idx][:2]
18
+ crop_past_key_values += ((key_states[..., :-(num_tokens_for_img+1), :], value_states[..., :-(num_tokens_for_img+1), :], ),)
19
+ return crop_past_key_values
20
+ # return DynamicCache.from_legacy_cache(crop_past_key_values)
21
+
22
+ def crop_position_ids_for_cache(self, position_ids, num_tokens_for_img):
23
+ if isinstance(position_ids, list):
24
+ for i in range(len(position_ids)):
25
+ position_ids[i] = position_ids[i][:, -(num_tokens_for_img+1):]
26
+ else:
27
+ position_ids = position_ids[:, -(num_tokens_for_img+1):]
28
+ return position_ids
29
+
30
+ def crop_attention_mask_for_cache(self, attention_mask, num_tokens_for_img):
31
+ if isinstance(attention_mask, list):
32
+ return [x[..., -(num_tokens_for_img+1):, :] for x in attention_mask]
33
+ return attention_mask[..., -(num_tokens_for_img+1):, :]
34
+
35
+ def __call__(self, z, func, model_kwargs, use_kv_cache: bool=True):
36
+ past_key_values = None
37
+ for i in tqdm(range(self.num_steps)):
38
+ timesteps = torch.zeros(size=(len(z), )).to(z.device) + self.sigma[i]
39
+ pred, temp_past_key_values = func(z, timesteps, past_key_values=past_key_values, **model_kwargs)
40
+ sigma_next = self.sigma[i+1]
41
+ sigma = self.sigma[i]
42
+ z = z + (sigma_next - sigma) * pred
43
+ if i == 0 and use_kv_cache:
44
+ num_tokens_for_img = z.size(-1)*z.size(-2) // 4
45
+ if isinstance(temp_past_key_values, list):
46
+ past_key_values = [self.crop_kv_cache(x, num_tokens_for_img) for x in temp_past_key_values]
47
+ model_kwargs['input_ids'] = [None] * len(temp_past_key_values)
48
+ else:
49
+ past_key_values = self.crop_kv_cache(temp_past_key_values, num_tokens_for_img)
50
+ model_kwargs['input_ids'] = None
51
+
52
+ model_kwargs['position_ids'] = self.crop_position_ids_for_cache(model_kwargs['position_ids'], num_tokens_for_img)
53
+ model_kwargs['attention_mask'] = self.crop_attention_mask_for_cache(model_kwargs['attention_mask'], num_tokens_for_img)
54
+ return z
55
+
OmniGen/train_helper/__init__.py ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ from .data import DatasetFromJson, TrainDataCollator
2
+ from .loss import training_losses
OmniGen/train_helper/data.py ADDED
@@ -0,0 +1,116 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import datasets
3
+ from datasets import load_dataset, ClassLabel, concatenate_datasets
4
+ import torch
5
+ import numpy as np
6
+ import random
7
+ from PIL import Image
8
+ import json
9
+ import copy
10
+ # import torchvision.transforms as T
11
+ from torchvision import transforms
12
+ import pickle
13
+ import re
14
+
15
+ from OmniGen import OmniGenProcessor
16
+ from OmniGen.processor import OmniGenCollator
17
+
18
+
19
+ class DatasetFromJson(torch.utils.data.Dataset):
20
+ def __init__(
21
+ self,
22
+ json_file: str,
23
+ image_path: str,
24
+ processer: OmniGenProcessor,
25
+ image_transform,
26
+ max_input_length_limit: int = 18000,
27
+ condition_dropout_prob: float = 0.1,
28
+ keep_raw_resolution: bool = True,
29
+ ):
30
+
31
+ self.image_transform = image_transform
32
+ self.processer = processer
33
+ self.condition_dropout_prob = condition_dropout_prob
34
+ self.max_input_length_limit = max_input_length_limit
35
+ self.keep_raw_resolution = keep_raw_resolution
36
+
37
+ self.data = load_dataset('json', data_files=json_file)['train']
38
+ self.image_path = image_path
39
+
40
+ def process_image(self, image_file):
41
+ if self.image_path is not None:
42
+ image_file = os.path.join(self.image_path, image_file)
43
+ image = Image.open(image_file).convert('RGB')
44
+ return self.image_transform(image)
45
+
46
+ def get_example(self, index):
47
+ example = self.data[index]
48
+
49
+ instruction, input_images, output_image = example['instruction'], example['input_images'], example['output_image']
50
+ if random.random() < self.condition_dropout_prob:
51
+ instruction = '<cfg>'
52
+ input_images = None
53
+ if input_images is not None:
54
+ input_images = [self.process_image(x) for x in input_images]
55
+ mllm_input = self.processer.process_multi_modal_prompt(instruction, input_images)
56
+
57
+ output_image = self.process_image(output_image)
58
+
59
+ return (mllm_input, output_image)
60
+
61
+
62
+ def __getitem__(self, index):
63
+ return self.get_example(index)
64
+ for _ in range(8):
65
+ try:
66
+ mllm_input, output_image = self.get_example(index)
67
+ if len(mllm_input['input_ids']) > self.max_input_length_limit:
68
+ raise RuntimeError(f"cur number of tokens={len(mllm_input['input_ids'])}, larger than max_input_length_limit={self.max_input_length_limit}")
69
+ return mllm_input, output_image
70
+ except Exception as e:
71
+ print("error when loading data: ", e)
72
+ print(self.data[index])
73
+ index = random.randint(0, len(self.data)-1)
74
+ raise RuntimeError("Too many bad data.")
75
+
76
+
77
+ def __len__(self):
78
+ return len(self.data)
79
+
80
+
81
+
82
+ class TrainDataCollator(OmniGenCollator):
83
+ def __init__(self, pad_token_id: int, hidden_size: int, keep_raw_resolution: bool):
84
+ self.pad_token_id = pad_token_id
85
+ self.hidden_size = hidden_size
86
+ self.keep_raw_resolution = keep_raw_resolution
87
+
88
+ def __call__(self, features):
89
+ mllm_inputs = [f[0] for f in features]
90
+
91
+ output_images = [f[1].unsqueeze(0) for f in features]
92
+ target_img_size = [[x.size(-2), x.size(-1)] for x in output_images]
93
+
94
+ all_padded_input_ids, all_position_ids, all_attention_mask, all_padding_images, all_pixel_values, all_image_sizes = self.process_mllm_input(mllm_inputs, target_img_size)
95
+
96
+ if not self.keep_raw_resolution:
97
+ output_image = torch.cat(output_image, dim=0)
98
+ if len(pixel_values) > 0:
99
+ all_pixel_values = torch.cat(all_pixel_values, dim=0)
100
+ else:
101
+ all_pixel_values = None
102
+
103
+ data = {"input_ids": all_padded_input_ids,
104
+ "attention_mask": all_attention_mask,
105
+ "position_ids": all_position_ids,
106
+ "input_pixel_values": all_pixel_values,
107
+ "input_image_sizes": all_image_sizes,
108
+ "padding_images": all_padding_images,
109
+ "output_images": output_images,
110
+ }
111
+ return data
112
+
113
+
114
+
115
+
116
+
OmniGen/train_helper/loss.py ADDED
@@ -0,0 +1,68 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+
3
+
4
+ def sample_x0(x1):
5
+ """Sampling x0 & t based on shape of x1 (if needed)
6
+ Args:
7
+ x1 - data point; [batch, *dim]
8
+ """
9
+ if isinstance(x1, (list, tuple)):
10
+ x0 = [torch.randn_like(img_start) for img_start in x1]
11
+ else:
12
+ x0 = torch.randn_like(x1)
13
+
14
+ return x0
15
+
16
+ def sample_timestep(x1):
17
+ u = torch.normal(mean=0.0, std=1.0, size=(len(x1),))
18
+ t = 1 / (1 + torch.exp(-u))
19
+ t = t.to(x1[0])
20
+ return t
21
+
22
+
23
+ def training_losses(model, x1, model_kwargs=None, snr_type='uniform'):
24
+ """Loss for training torche score model
25
+ Args:
26
+ - model: backbone model; could be score, noise, or velocity
27
+ - x1: datapoint
28
+ - model_kwargs: additional arguments for torche model
29
+ """
30
+ if model_kwargs == None:
31
+ model_kwargs = {}
32
+
33
+ B = len(x1)
34
+
35
+ x0 = sample_x0(x1)
36
+ t = sample_timestep(x1)
37
+
38
+ if isinstance(x1, (list, tuple)):
39
+ xt = [t[i] * x1[i] + (1 - t[i]) * x0[i] for i in range(B)]
40
+ ut = [x1[i] - x0[i] for i in range(B)]
41
+ else:
42
+ dims = [1] * (len(x1.size()) - 1)
43
+ t_ = t.view(t.size(0), *dims)
44
+ xt = t_ * x1 + (1 - t_) * x0
45
+ ut = x1 - x0
46
+
47
+ model_output = model(xt, t, **model_kwargs)
48
+
49
+ terms = {}
50
+
51
+ if isinstance(x1, (list, tuple)):
52
+ assert len(model_output) == len(ut) == len(x1)
53
+ for i in range(B):
54
+ terms["loss"] = torch.stack(
55
+ [((ut[i] - model_output[i]) ** 2).mean() for i in range(B)],
56
+ dim=0,
57
+ )
58
+ else:
59
+ terms["loss"] = mean_flat(((model_output - ut) ** 2))
60
+
61
+ return terms
62
+
63
+
64
+ def mean_flat(x):
65
+ """
66
+ Take torche mean over all non-batch dimensions.
67
+ """
68
+ return torch.mean(x, dim=list(range(1, len(x.size()))))
OmniGen/transformer.py ADDED
@@ -0,0 +1,159 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+ import warnings
3
+ from typing import List, Optional, Tuple, Union
4
+
5
+ import torch
6
+ import torch.utils.checkpoint
7
+ from torch import nn
8
+ from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
9
+ from huggingface_hub import snapshot_download
10
+
11
+ from transformers.modeling_outputs import (
12
+ BaseModelOutputWithPast,
13
+ CausalLMOutputWithPast,
14
+ SequenceClassifierOutputWithPast,
15
+ TokenClassifierOutput,
16
+ )
17
+ from transformers.modeling_utils import PreTrainedModel
18
+ from transformers import Phi3Config, Phi3Model
19
+ from transformers.cache_utils import Cache, DynamicCache, StaticCache
20
+ from transformers.utils import logging
21
+
22
+ logger = logging.get_logger(__name__)
23
+
24
+
25
+ class Phi3Transformer(Phi3Model):
26
+ """
27
+ Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`Phi3DecoderLayer`]
28
+ We only modified the attention mask
29
+ Args:
30
+ config: Phi3Config
31
+ """
32
+
33
+ def forward(
34
+ self,
35
+ input_ids: torch.LongTensor = None,
36
+ attention_mask: Optional[torch.Tensor] = None,
37
+ position_ids: Optional[torch.LongTensor] = None,
38
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
39
+ inputs_embeds: Optional[torch.FloatTensor] = None,
40
+ use_cache: Optional[bool] = None,
41
+ output_attentions: Optional[bool] = None,
42
+ output_hidden_states: Optional[bool] = None,
43
+ return_dict: Optional[bool] = None,
44
+ cache_position: Optional[torch.LongTensor] = None,
45
+ ) -> Union[Tuple, BaseModelOutputWithPast]:
46
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
47
+ output_hidden_states = (
48
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
49
+ )
50
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
51
+
52
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
53
+
54
+ if (input_ids is None) ^ (inputs_embeds is not None):
55
+ raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
56
+
57
+ if self.gradient_checkpointing and self.training:
58
+ if use_cache:
59
+ logger.warning_once(
60
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
61
+ )
62
+ use_cache = False
63
+
64
+ # kept for BC (non `Cache` `past_key_values` inputs)
65
+ return_legacy_cache = False
66
+ if use_cache and not isinstance(past_key_values, Cache):
67
+ return_legacy_cache = True
68
+ if past_key_values is None:
69
+ past_key_values = DynamicCache()
70
+ else:
71
+ past_key_values = DynamicCache.from_legacy_cache(past_key_values)
72
+ logger.warning_once(
73
+ "We detected that you are passing `past_key_values` as a tuple of tuples. This is deprecated and "
74
+ "will be removed in v4.47. Please convert your cache or use an appropriate `Cache` class "
75
+ "(https://huggingface.co/docs/transformers/kv_cache#legacy-cache-format)"
76
+ )
77
+
78
+ if inputs_embeds is None:
79
+ inputs_embeds = self.embed_tokens(input_ids)
80
+
81
+ if cache_position is None:
82
+ past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
83
+ cache_position = torch.arange(
84
+ past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
85
+ )
86
+ if position_ids is None:
87
+ position_ids = cache_position.unsqueeze(0)
88
+
89
+ if attention_mask is not None and attention_mask.dim() == 3:
90
+ dtype = inputs_embeds.dtype
91
+ min_dtype = torch.finfo(dtype).min
92
+ attention_mask = (1 - attention_mask) * min_dtype
93
+ attention_mask = attention_mask.unsqueeze(1).to(inputs_embeds.dtype)
94
+ else:
95
+ raise
96
+ # causal_mask = self._update_causal_mask(
97
+ # attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions
98
+ # )
99
+
100
+ hidden_states = inputs_embeds
101
+
102
+ # decoder layers
103
+ all_hidden_states = () if output_hidden_states else None
104
+ all_self_attns = () if output_attentions else None
105
+ next_decoder_cache = None
106
+
107
+ for decoder_layer in self.layers:
108
+ if output_hidden_states:
109
+ all_hidden_states += (hidden_states,)
110
+
111
+ if self.gradient_checkpointing and self.training:
112
+ layer_outputs = self._gradient_checkpointing_func(
113
+ decoder_layer.__call__,
114
+ hidden_states,
115
+ attention_mask,
116
+ position_ids,
117
+ past_key_values,
118
+ output_attentions,
119
+ use_cache,
120
+ cache_position,
121
+ )
122
+ else:
123
+ layer_outputs = decoder_layer(
124
+ hidden_states,
125
+ attention_mask=attention_mask,
126
+ position_ids=position_ids,
127
+ past_key_value=past_key_values,
128
+ output_attentions=output_attentions,
129
+ use_cache=use_cache,
130
+ cache_position=cache_position,
131
+ )
132
+
133
+ hidden_states = layer_outputs[0]
134
+
135
+ if use_cache:
136
+ next_decoder_cache = layer_outputs[2 if output_attentions else 1]
137
+
138
+ if output_attentions:
139
+ all_self_attns += (layer_outputs[1],)
140
+
141
+ hidden_states = self.norm(hidden_states)
142
+
143
+ # add hidden states from the last decoder layer
144
+ if output_hidden_states:
145
+ all_hidden_states += (hidden_states,)
146
+
147
+ next_cache = next_decoder_cache if use_cache else None
148
+ if return_legacy_cache:
149
+ next_cache = next_cache.to_legacy_cache()
150
+
151
+ if not return_dict:
152
+ return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
153
+ return BaseModelOutputWithPast(
154
+ last_hidden_state=hidden_states,
155
+ past_key_values=next_cache,
156
+ hidden_states=all_hidden_states,
157
+ attentions=all_self_attns,
158
+ )
159
+
OmniGen/utils.py ADDED
@@ -0,0 +1,110 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import logging
2
+
3
+ from PIL import Image
4
+ import torch
5
+ import numpy as np
6
+
7
+ def create_logger(logging_dir):
8
+ """
9
+ Create a logger that writes to a log file and stdout.
10
+ """
11
+ logging.basicConfig(
12
+ level=logging.INFO,
13
+ format='[\033[34m%(asctime)s\033[0m] %(message)s',
14
+ datefmt='%Y-%m-%d %H:%M:%S',
15
+ handlers=[logging.StreamHandler(), logging.FileHandler(f"{logging_dir}/log.txt")]
16
+ )
17
+ logger = logging.getLogger(__name__)
18
+ return logger
19
+
20
+
21
+ @torch.no_grad()
22
+ def update_ema(ema_model, model, decay=0.9999):
23
+ """
24
+ Step the EMA model towards the current model.
25
+ """
26
+ ema_params = dict(ema_model.named_parameters())
27
+ for name, param in model.named_parameters():
28
+ # TODO: Consider applying only to params that require_grad to avoid small numerical changes of pos_embed
29
+ ema_params[name].mul_(decay).add_(param.data, alpha=1 - decay)
30
+
31
+
32
+
33
+
34
+ def requires_grad(model, flag=True):
35
+ """
36
+ Set requires_grad flag for all parameters in a model.
37
+ """
38
+ for p in model.parameters():
39
+ p.requires_grad = flag
40
+
41
+
42
+ def center_crop_arr(pil_image, image_size):
43
+ """
44
+ Center cropping implementation from ADM.
45
+ https://github.com/openai/guided-diffusion/blob/8fb3ad9197f16bbc40620447b2742e13458d2831/guided_diffusion/image_datasets.py#L126
46
+ """
47
+ while min(*pil_image.size) >= 2 * image_size:
48
+ pil_image = pil_image.resize(
49
+ tuple(x // 2 for x in pil_image.size), resample=Image.BOX
50
+ )
51
+
52
+ scale = image_size / min(*pil_image.size)
53
+ pil_image = pil_image.resize(
54
+ tuple(round(x * scale) for x in pil_image.size), resample=Image.BICUBIC
55
+ )
56
+
57
+ arr = np.array(pil_image)
58
+ crop_y = (arr.shape[0] - image_size) // 2
59
+ crop_x = (arr.shape[1] - image_size) // 2
60
+ return Image.fromarray(arr[crop_y: crop_y + image_size, crop_x: crop_x + image_size])
61
+
62
+
63
+
64
+ def crop_arr(pil_image, max_image_size):
65
+ while min(*pil_image.size) >= 2 * max_image_size:
66
+ pil_image = pil_image.resize(
67
+ tuple(x // 2 for x in pil_image.size), resample=Image.BOX
68
+ )
69
+
70
+ if max(*pil_image.size) > max_image_size:
71
+ scale = max_image_size / max(*pil_image.size)
72
+ pil_image = pil_image.resize(
73
+ tuple(round(x * scale) for x in pil_image.size), resample=Image.BICUBIC
74
+ )
75
+
76
+ if min(*pil_image.size) < 16:
77
+ scale = 16 / min(*pil_image.size)
78
+ pil_image = pil_image.resize(
79
+ tuple(round(x * scale) for x in pil_image.size), resample=Image.BICUBIC
80
+ )
81
+
82
+ arr = np.array(pil_image)
83
+ crop_y1 = (arr.shape[0] % 16) // 2
84
+ crop_y2 = arr.shape[0] % 16 - crop_y1
85
+
86
+ crop_x1 = (arr.shape[1] % 16) // 2
87
+ crop_x2 = arr.shape[1] % 16 - crop_x1
88
+
89
+ arr = arr[crop_y1:arr.shape[0]-crop_y2, crop_x1:arr.shape[1]-crop_x2]
90
+ return Image.fromarray(arr)
91
+
92
+
93
+
94
+ def vae_encode(vae, x, weight_dtype):
95
+ if x is not None:
96
+ if vae.config.shift_factor is not None:
97
+ x = vae.encode(x).latent_dist.sample()
98
+ x = (x - vae.config.shift_factor) * vae.config.scaling_factor
99
+ else:
100
+ x = vae.encode(x).latent_dist.sample().mul_(vae.config.scaling_factor)
101
+ x = x.to(weight_dtype)
102
+ return x
103
+
104
+ def vae_encode_list(vae, x, weight_dtype):
105
+ latents = []
106
+ for img in x:
107
+ img = vae_encode(vae, img, weight_dtype)
108
+ latents.append(img)
109
+ return latents
110
+
README.md CHANGED
@@ -1,14 +1,93 @@
1
- ---
2
- title: OmniGen
3
- emoji: 👁
4
- colorFrom: purple
5
- colorTo: indigo
6
- sdk: gradio
7
- sdk_version: 5.4.0
8
- app_file: app.py
9
- pinned: false
10
- license: mit
11
- short_description: OmniGen
12
- ---
13
-
14
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ <h1 align="center">OmniGen: Unified Image Generation</h1>
2
+
3
+
4
+ <p align="center">
5
+ <a href="">
6
+ <img alt="Build" src="https://img.shields.io/badge/Project%20Page-OmniGen-yellow">
7
+ </a>
8
+ <a href="https://arxiv.org/abs/2409.11340">
9
+ <img alt="Build" src="https://img.shields.io/badge/arXiv%20paper-2409.11340-b31b1b.svg">
10
+ </a>
11
+ <a href="https://huggingface.co/spaces/Shitao/OmniGen">
12
+ <img alt="License" src="https://img.shields.io/badge/HF%20Demo-🤗-lightblue">
13
+ </a>
14
+ <a href="https://huggingface.co/Shitao/OmniGen-v1">
15
+ <img alt="Build" src="https://img.shields.io/badge/HF%20Model-🤗-yellow">
16
+ </a>
17
+ </p>
18
+
19
+ <h4 align="center">
20
+ <p>
21
+ <a href=#2-news>Credits for Quantized version</a> |
22
+ <a href=#3-methodology>Methodology</a> |
23
+ <a href=#4-what-can-omnigen-do>Capabilities</a> |
24
+ <a href="#license">License</a> |
25
+ <a href="#citation">Citation</a>
26
+ <p>
27
+ </h4>
28
+
29
+
30
+ ## 1. Overview
31
+
32
+ OmniGen is a unified image generation model that can generate a wide range of images from multi-modal prompts. It is designed to be simple, flexible and easy to use. We provide [inference code](#5-quick-start) so that everyone can explore more functionalities of OmniGen.
33
+
34
+ Existing image generation models often require loading several additional network modules (such as ControlNet, IP-Adapter, Reference-Net, etc.) and performing extra preprocessing steps (e.g., face detection, pose estimation, cropping, etc.) to generate a satisfactory image. However, **we believe that the future image generation paradigm should be more simple and flexible, that is, generating various images directly through arbitrarily multi-modal instructions without the need for additional plugins and operations, similar to how GPT works in language generation.**
35
+
36
+ Due to the limited resources, OmniGen still has room for improvement. We will continue to optimize it, and hope it inspire more universal image generation models. You can also easily fine-tune OmniGen without worrying about designing networks for specific tasks; you just need to prepare the corresponding data, and then run the [script](#6-finetune). Imagination is no longer limited; everyone can construct any image generation task, and perhaps we can achieve very interesting, wonderful and creative things.
37
+
38
+ If you have any questions, ideas or interesting tasks you want OmniGen to accomplish, feel free to discuss with us: 2906698981@qq.com, wangyueze@tju.edu.cn, zhengliu1026@gmail.com. We welcome any feedback to help us improve the model.
39
+
40
+
41
+
42
+ ## 2. Credits for Quantized version
43
+ - https://github.com/Manni1000
44
+
45
+
46
+
47
+ ## 3. Methodology
48
+
49
+ You can see details in our [paper](https://arxiv.org/abs/2409.11340).
50
+
51
+
52
+ ## 4. What Can OmniGen do?
53
+
54
+
55
+ OmniGen is a unified image generation model that you can use to perform various tasks, including but not limited to text-to-image generation, subject-driven generation, Identity-Preserving Generation, image editing, and image-conditioned generation. **OmniGen don't need additional plugins or operations, it can automatically identify the features (e.g., required object, human pose, depth mapping) in input images according the text prompt.**
56
+ We showcase some examples in [inference.ipynb](inference.ipynb). And in [inference_demo.ipynb](inference_demo.ipynb), we show an interesting pipeline to generate and modify a image.
57
+
58
+ Here is the illustration of OmniGen's capabilities:
59
+ - You can control the image generation flexibly via OmniGen
60
+ ![demo](./imgs/demo_cases.png)
61
+ - Referring Expression Generation: You can generate images by simply referring to objects, and OmniGen will automatically recognize the required objects in the image.
62
+ ![demo](./imgs/referring.png)
63
+
64
+ If you are not entirely satisfied with certain functionalities or wish to add new capabilities, you can try [fine-tuning OmniGen](#6-finetune).
65
+
66
+
67
+
68
+ ## 5. Quick Start
69
+
70
+ ### Please refer youtube video for installation
71
+
72
+ https://www.youtube.com/watch?v=9ZXmXA2AJZ4
73
+
74
+
75
+ ## License
76
+ This repo is licensed under the [MIT License](LICENSE).
77
+
78
+
79
+ ## Citation
80
+ If you find this repository useful, please consider giving a star ⭐ and citation
81
+ ```
82
+ @article{xiao2024omnigen,
83
+ title={Omnigen: Unified image generation},
84
+ author={Xiao, Shitao and Wang, Yueze and Zhou, Junjie and Yuan, Huaying and Xing, Xingrun and Yan, Ruiran and Wang, Shuting and Huang, Tiejun and Liu, Zheng},
85
+ journal={arXiv preprint arXiv:2409.11340},
86
+ year={2024}
87
+ }
88
+ ```
89
+
90
+
91
+
92
+
93
+
app.py ADDED
@@ -0,0 +1,359 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from PIL import Image
3
+ import os
4
+ from threading import Lock
5
+
6
+ from OmniGen import OmniGenPipeline
7
+
8
+ class OmniGenManager:
9
+ def __init__(self):
10
+ self.pipe = None
11
+ self.lock = Lock()
12
+ self.current_quantization = None
13
+
14
+ def get_pipeline(self, quantization: bool) -> OmniGenPipeline:
15
+ """
16
+ Get or initialize the pipeline with the specified quantization setting.
17
+ Uses a lock to ensure thread safety.
18
+ """
19
+ with self.lock:
20
+ # Only reinitialize if quantization setting changed or pipeline doesn't exist
21
+ if self.pipe is None or self.current_quantization != quantization:
22
+ # Clear any existing pipeline
23
+ if self.pipe is not None:
24
+ del self.pipe
25
+ self.pipe = None
26
+
27
+ # Initialize new pipeline
28
+ self.pipe = OmniGenPipeline.from_pretrained(
29
+ "Shitao/OmniGen-v1",
30
+ Quantization=quantization
31
+ )
32
+ self.current_quantization = quantization
33
+
34
+ return self.pipe
35
+
36
+ # Create a single instance of the manager
37
+ pipeline_manager = OmniGenManager()
38
+
39
+ def generate_image(text, img1, img2, img3, height, width, guidance_scale, img_guidance_scale, inference_steps, seed, quantization):
40
+ input_images = [img1, img2, img3]
41
+ # 去除 None
42
+ input_images = [img for img in input_images if img is not None]
43
+ if len(input_images) == 0:
44
+ input_images = None
45
+
46
+ # Get or initialize pipeline with current settings
47
+ pipe = pipeline_manager.get_pipeline(quantization)
48
+
49
+ # Generate image
50
+ output = pipe(
51
+ prompt=text,
52
+ input_images=input_images,
53
+ height=height,
54
+ width=width,
55
+ guidance_scale=guidance_scale,
56
+ img_guidance_scale=1.6,
57
+ num_inference_steps=inference_steps,
58
+ separate_cfg_infer=True, # set False can speed up the inference process
59
+ use_kv_cache=False,
60
+ seed=seed,
61
+ )
62
+ img = output[0]
63
+ return img
64
+ # def generate_image(text, img1, img2, img3, height, width, guidance_scale, inference_steps):
65
+ # input_images = []
66
+ # if img1:
67
+ # input_images.append(Image.open(img1))
68
+ # if img2:
69
+ # input_images.append(Image.open(img2))
70
+ # if img3:
71
+ # input_images.append(Image.open(img3))
72
+
73
+ # return input_images[0] if input_images else None
74
+
75
+
76
+ def get_example():
77
+ case = [
78
+ [
79
+ "A curly-haired man in a red shirt is drinking tea.",
80
+ None,
81
+ None,
82
+ None,
83
+ 1024,
84
+ 1024,
85
+ 2.5,
86
+ 1.6,
87
+ 50,
88
+ 0,
89
+ ],
90
+ [
91
+ "The woman in <img><|image_1|></img> waves her hand happily in the crowd",
92
+ "./imgs/test_cases/zhang.png",
93
+ None,
94
+ None,
95
+ 1024,
96
+ 1024,
97
+ 2.5,
98
+ 1.9,
99
+ 50,
100
+ 128,
101
+ ],
102
+ [
103
+ "A man in a black shirt is reading a book. The man is the right man in <img><|image_1|></img>.",
104
+ "./imgs/test_cases/two_man.jpg",
105
+ None,
106
+ None,
107
+ 1024,
108
+ 1024,
109
+ 2.5,
110
+ 1.6,
111
+ 50,
112
+ 0,
113
+ ],
114
+ [
115
+ "Two woman are raising fried chicken legs in a bar. A woman is <img><|image_1|></img>. The other woman is <img><|image_2|></img>.",
116
+ "./imgs/test_cases/mckenna.jpg",
117
+ "./imgs/test_cases/Amanda.jpg",
118
+ None,
119
+ 1024,
120
+ 1024,
121
+ 2.5,
122
+ 1.8,
123
+ 50,
124
+ 168,
125
+ ],
126
+ [
127
+ "A man and a short-haired woman with a wrinkled face are standing in front of a bookshelf in a library. The man is the man in the middle of <img><|image_1|></img>, and the woman is oldest woman in <img><|image_2|></img>",
128
+ "./imgs/test_cases/1.jpg",
129
+ "./imgs/test_cases/2.jpg",
130
+ None,
131
+ 1024,
132
+ 1024,
133
+ 2.5,
134
+ 1.6,
135
+ 50,
136
+ 60,
137
+ ],
138
+ [
139
+ "A man and a woman are sitting at a classroom desk. The man is the man with yellow hair in <img><|image_1|></img>. The woman is the woman on the left of <img><|image_2|></img>",
140
+ "./imgs/test_cases/3.jpg",
141
+ "./imgs/test_cases/4.jpg",
142
+ None,
143
+ 1024,
144
+ 1024,
145
+ 2.5,
146
+ 1.8,
147
+ 50,
148
+ 66,
149
+ ],
150
+ [
151
+ "The flower <img><|image_1|><\/img> is placed in the vase which is in the middle of <img><|image_2|><\/img> on a wooden table of a living room",
152
+ "./imgs/test_cases/rose.jpg",
153
+ "./imgs/test_cases/vase.jpg",
154
+ None,
155
+ 1024,
156
+ 1024,
157
+ 2.5,
158
+ 1.6,
159
+ 50,
160
+ 0,
161
+ ],
162
+ [
163
+ "<img><|image_1|><img>\n Remove the woman's earrings. Replace the mug with a clear glass filled with sparkling iced cola.",
164
+ "./imgs/demo_cases/t2i_woman_with_book.png",
165
+ None,
166
+ None,
167
+ 1024,
168
+ 1024,
169
+ 2.5,
170
+ 1.6,
171
+ 50,
172
+ 222,
173
+ ],
174
+ [
175
+ "Detect the skeleton of human in this image: <img><|image_1|></img>.",
176
+ "./imgs/test_cases/control.jpg",
177
+ None,
178
+ None,
179
+ 1024,
180
+ 1024,
181
+ 2.0,
182
+ 1.6,
183
+ 50,
184
+ 0,
185
+ ],
186
+ [
187
+ "Generate a new photo using the following picture and text as conditions: <img><|image_1|><img>\n A young boy is sitting on a sofa in the library, holding a book. His hair is neatly combed, and a faint smile plays on his lips, with a few freckles scattered across his cheeks. The library is quiet, with rows of shelves filled with books stretching out behind him.",
188
+ "./imgs/demo_cases/skeletal.png",
189
+ None,
190
+ None,
191
+ 1024,
192
+ 1024,
193
+ 2,
194
+ 1.6,
195
+ 50,
196
+ 42,
197
+ ],
198
+ [
199
+ "Following the pose of this image <img><|image_1|><img>, generate a new photo: A young boy is sitting on a sofa in the library, holding a book. His hair is neatly combed, and a faint smile plays on his lips, with a few freckles scattered across his cheeks. The library is quiet, with rows of shelves filled with books stretching out behind him.",
200
+ "./imgs/demo_cases/edit.png",
201
+ None,
202
+ None,
203
+ 1024,
204
+ 1024,
205
+ 2.0,
206
+ 1.6,
207
+ 50,
208
+ 123,
209
+ ],
210
+ [
211
+ "Following the depth mapping of this image <img><|image_1|><img>, generate a new photo: A young girl is sitting on a sofa in the library, holding a book. His hair is neatly combed, and a faint smile plays on his lips, with a few freckles scattered across his cheeks. The library is quiet, with rows of shelves filled with books stretching out behind him.",
212
+ "./imgs/demo_cases/edit.png",
213
+ None,
214
+ None,
215
+ 1024,
216
+ 1024,
217
+ 2.0,
218
+ 1.6,
219
+ 50,
220
+ 1,
221
+ ],
222
+ [
223
+ "<img><|image_1|><\/img> What item can be used to see the current time? Please remove it.",
224
+ "./imgs/test_cases/watch.jpg",
225
+ None,
226
+ None,
227
+ 1024,
228
+ 1024,
229
+ 2.5,
230
+ 1.6,
231
+ 50,
232
+ 0,
233
+ ],
234
+ [
235
+ "According to the following examples, generate an output for the input.\nInput: <img><|image_1|></img>\nOutput: <img><|image_2|></img>\n\nInput: <img><|image_3|></img>\nOutput: ",
236
+ "./imgs/test_cases/icl1.jpg",
237
+ "./imgs/test_cases/icl2.jpg",
238
+ "./imgs/test_cases/icl3.jpg",
239
+ 1024,
240
+ 1024,
241
+ 2.5,
242
+ 1.6,
243
+ 50,
244
+ 1,
245
+ ],
246
+ ]
247
+ return case
248
+
249
+ def run_for_examples(text, img1, img2, img3, height, width, guidance_scale, img_guidance_scale, inference_steps, seed):
250
+ return generate_image(text, img1, img2, img3, height, width, guidance_scale, img_guidance_scale, inference_steps, seed)
251
+
252
+ description = """
253
+ OmniGen is a unified image generation model that you can use to perform various tasks, including but not limited to text-to-image generation, subject-driven generation, Identity-Preserving Generation, and image-conditioned generation.
254
+
255
+ For multi-modal to image generation, you should pass a string as `prompt`, and a list of image paths as `input_images`. The placeholder in the prompt should be in the format of `<img><|image_*|></img>` (for the first image, the placeholder is <img><|image_1|></img>. for the second image, the the placeholder is <img><|image_2|></img>).
256
+ For example, use an image of a woman to generate a new image:
257
+ prompt = "A woman holds a bouquet of flowers and faces the camera. Thw woman is \<img\>\<|image_1|\>\</img\>."
258
+
259
+ Tips:
260
+ - Oversaturated: If the image appears oversaturated, please reduce the `guidance_scale`.
261
+ - Low-quality: More detailed prompt will lead to better results.
262
+ - Animate Style: If the genereate images is in animate style, you can try to add `photo` to the prompt`.
263
+ - Edit generated image. If you generate a image by omnigen and then want to edit it, you cannot use the same seed to edit this image. For example, use seed=0 to generate image, and should use seed=1 to edit this image.
264
+ - For image editing tasks, we recommend placing the image before the editing instruction. For example, use `<img><|image_1|></img> remove suit`, rather than `remove suit <img><|image_1|></img>`.
265
+ """
266
+
267
+ # Gradio 接口
268
+ with gr.Blocks() as demo:
269
+ gr.Markdown("# OmniGen: Unified Image Generation [paper](https://arxiv.org/abs/2409.11340) [code](https://github.com/VectorSpaceLab/OmniGen)")
270
+ gr.Markdown(description)
271
+ with gr.Row():
272
+ with gr.Column():
273
+ # 文本输入框
274
+ prompt_input = gr.Textbox(
275
+ label="Enter your prompt, use <img><|image_i|></img> to represent i-th input image", placeholder="Type your prompt here..."
276
+ )
277
+
278
+ with gr.Row(equal_height=True):
279
+ # 图片上传框
280
+ image_input_1 = gr.Image(label="<img><|image_1|></img>", type="filepath")
281
+ image_input_2 = gr.Image(label="<img><|image_2|></img>", type="filepath")
282
+ image_input_3 = gr.Image(label="<img><|image_3|></img>", type="filepath")
283
+
284
+ # 高度和宽度滑块
285
+ height_input = gr.Slider(
286
+ label="Height", minimum=256, maximum=2048, value=1024, step=16
287
+ )
288
+ width_input = gr.Slider(
289
+ label="Width", minimum=256, maximum=2048, value=1024, step=16
290
+ )
291
+
292
+ # 引导尺度输入
293
+ guidance_scale_input = gr.Slider(
294
+ label="Guidance Scale", minimum=1.0, maximum=5.0, value=2.5, step=0.1
295
+ )
296
+
297
+ img_guidance_scale_input = gr.Slider(
298
+ label="img_guidance_scale", minimum=1.0, maximum=2.0, value=1.6, step=0.1
299
+ )
300
+
301
+ num_inference_steps = gr.Slider(
302
+ label="Inference Steps", minimum=1, maximum=100, value=50, step=1
303
+ )
304
+
305
+ Quantization = gr.Checkbox(
306
+ label="Low VRAM (8-bit Quantization)", value=True
307
+ )
308
+
309
+ seed_input = gr.Slider(
310
+ label="Seed", minimum=0, maximum=2147483647, value=42, step=1
311
+ )
312
+
313
+ # 生成按钮
314
+ generate_button = gr.Button("Generate Image")
315
+
316
+ with gr.Column():
317
+ # 输出图像框
318
+ output_image = gr.Image(label="Output Image")
319
+
320
+ # 按钮点击事件
321
+ generate_button.click(
322
+ generate_image,
323
+ inputs=[
324
+ prompt_input,
325
+ image_input_1,
326
+ image_input_2,
327
+ image_input_3,
328
+ height_input,
329
+ width_input,
330
+ guidance_scale_input,
331
+ img_guidance_scale_input,
332
+ num_inference_steps,
333
+ seed_input,
334
+ Quantization,
335
+ ],
336
+ outputs=output_image,
337
+ )
338
+
339
+ gr.Examples(
340
+ examples=get_example(),
341
+ fn=run_for_examples,
342
+ inputs=[
343
+ prompt_input,
344
+ image_input_1,
345
+ image_input_2,
346
+ image_input_3,
347
+ height_input,
348
+ width_input,
349
+ guidance_scale_input,
350
+ img_guidance_scale_input,
351
+ num_inference_steps,
352
+ seed_input,
353
+ Quantization,
354
+ ],
355
+ outputs=output_image,
356
+ )
357
+
358
+ # 启动应用
359
+ demo.launch()
docs/fine-tuning.md ADDED
@@ -0,0 +1,172 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Fine-tuning OmniGen
2
+
3
+ Fine-tuning Omnigen can better help you handle specific image generation tasks. For example, by fine-tuning on a person's images, you can generate multiple pictures of that person while maintaining task consistency.
4
+
5
+ A lot of previous work focused on designing new networks to facilitate specific tasks. For instance, ControlNet was proposed to handle image conditions, and IP-Adapter was constructed to maintain ID features. If you want to perform new tasks, you need to build new architectures and repeatedly debug them. Adding and adjusting extra network parameters is usually time-consuming and labor-intensive, which is not user-friendly and cost-efficient enough. However, with Omnigen, all of this becomes very simple.
6
+
7
+ By comparison, Omnigen can accept multi-modal conditional inputs and has been pre-trained on various tasks. You can fine-tune it on any task without designing specialized networks like ControlNet or IP-Adapter for a specific task.
8
+
9
+ **All you need to do is prepare the data and start training. You can break the limitations of previous models, allowing Omnigen to accomplish a variety of interesting tasks, even those that have never been done before.**
10
+
11
+
12
+ ## Installation
13
+
14
+ ```bash
15
+ git clone https://github.com/VectorSpaceLab/OmniGen.git
16
+ cd OmniGen
17
+ pip install -e .
18
+ ```
19
+
20
+
21
+ ## Full fine-tuning
22
+
23
+ ### Fine-tuning command
24
+
25
+ ```bash
26
+ accelerate launch \
27
+ --num_processes=1 \
28
+ --use_fsdp \
29
+ --fsdp_offload_params false \
30
+ --fsdp_sharding_strategy SHARD_GRAD_OP \
31
+ --fsdp_auto_wrap_policy TRANSFORMER_BASED_WRAP \
32
+ --fsdp_transformer_layer_cls_to_wrap Phi3DecoderLayer \
33
+ --fsdp_state_dict_type FULL_STATE_DICT \
34
+ --fsdp_forward_prefetch false \
35
+ --fsdp_use_orig_params True \
36
+ --fsdp_cpu_ram_efficient_loading false \
37
+ --fsdp_sync_module_states True \
38
+ train.py \
39
+ --model_name_or_path Shitao/OmniGen-v1 \
40
+ --json_file ./toy_data/toy_data.jsonl \
41
+ --image_path ./toy_data/images \
42
+ --batch_size_per_device 1 \
43
+ --lr 2e-5 \
44
+ --keep_raw_resolution \
45
+ --max_image_size 1024 \
46
+ --gradient_accumulation_steps 1 \
47
+ --ckpt_every 100 \
48
+ --epochs 100 \
49
+ --log_every 1 \
50
+ --results_dir ./results/toy_finetune
51
+ ```
52
+
53
+ Some important arguments:
54
+ - `num_processes`: number of GPU to use for training
55
+ - `model_name_or_path`: path to the pretrained model
56
+ - `json_file`: path to the json file containing the training data, e.g., ./toy_data/toy_data.jsonl
57
+ - `image_path`: path to the image folder, e.g., ./toy_data/images
58
+ - `batch_size_per_device`: batch size per device
59
+ - `lr`: learning rate
60
+ - `keep_raw_resolution`: whether to keep the original resolution of the image, if not, all images will be resized to (max_image_size, max_image_size)
61
+ - `max_image_size`: max image size
62
+ - `gradient_accumulation_steps`: number of steps to accumulate gradients
63
+ - `ckpt_every`: number of steps to save checkpoint
64
+ - `epochs`: number of epochs
65
+ - `log_every`: number of steps to log
66
+ - `results_dir`: path to the results folder
67
+
68
+ The data format of json_file is as follows:
69
+ ```
70
+ {
71
+ "instruction": str,
72
+ "input_images": [str, str, ...],
73
+ "output_images": str
74
+ }
75
+ ```
76
+ You can see a toy example in `./toy_data/toy_data.jsonl`.
77
+
78
+ If an OOM(Out of Memory) issue occurs, you can try to decrease the `batch_size_per_device` or `max_image_size`. You can also try to use LoRA instead of full fine-tuning.
79
+
80
+
81
+ ### Inference
82
+
83
+ The checkpoint can be found at `{results_dir}/checkpoints/*`. You can use the following command to load saved checkpoint:
84
+ ```python
85
+ from OmniGen import OmniGenPipeline
86
+
87
+ pipe = OmniGenPipeline.from_pretrained("checkpoint_path") # e.g., ./results/toy_finetune/checkpoints/0000200
88
+ ```
89
+
90
+
91
+
92
+
93
+
94
+ ## LoRA fine-tuning
95
+ LoRA fine-tuning is a simple way to fine-tune OmniGen with less GPU memory. To use lora, you should add `--use_lora` and `--lora_rank` to the command.
96
+
97
+ ```bash
98
+ accelerate launch \
99
+ --num_processes=1 \
100
+ train.py \
101
+ --model_name_or_path Shitao/OmniGen-v1 \
102
+ --batch_size_per_device 2 \
103
+ --condition_dropout_prob 0.01 \
104
+ --lr 3e-4 \
105
+ --use_lora \
106
+ --lora_rank 8 \
107
+ --json_file ./toy_data/toy_data.jsonl \
108
+ --image_path ./toy_data/images \
109
+ --max_input_length_limit 18000 \
110
+ --keep_raw_resolution \
111
+ --max_image_size 1024 \
112
+ --gradient_accumulation_steps 1 \
113
+ --ckpt_every 100 \
114
+ --epochs 100 \
115
+ --log_every 1 \
116
+ --results_dir ./results/toy_finetune_lora
117
+ ```
118
+
119
+ ### Inference
120
+
121
+ The checkpoint can be found at `{results_dir}/checkpoints/*`. You can use the following command to load checkpoint:
122
+ ```python
123
+ from OmniGen import OmniGenPipeline
124
+
125
+ pipe = OmniGenPipeline.from_pretrained("Shitao/OmniGen-v1")
126
+ pipe.merge_lora("checkpoint_path") # e.g., ./results/toy_finetune_lora/checkpoints/0000100
127
+ ```
128
+
129
+
130
+ ## A simple example
131
+
132
+ Here is an example for learning new concepts: "sks dog". We use five images of one dog from [dog-example](https://huggingface.co/datasets/diffusers/dog-example).
133
+
134
+ The json file is `./toy_data/toy_subject_data.jsonl`, and the images have been saved in `./toy_data/images`.
135
+
136
+ ```bash
137
+ accelerate launch \
138
+ --num_processes=1 \
139
+ train.py \
140
+ --model_name_or_path Shitao/OmniGen-v1 \
141
+ --batch_size_per_device 2 \
142
+ --condition_dropout_prob 0.01 \
143
+ --lr 1e-3 \
144
+ --use_lora \
145
+ --lora_rank 8 \
146
+ --json_file ./toy_data/toy_subject_data.jsonl \
147
+ --image_path ./toy_data/images \
148
+ --max_input_length_limit 18000 \
149
+ --keep_raw_resolution \
150
+ --max_image_size 1024 \
151
+ --gradient_accumulation_steps 1 \
152
+ --ckpt_every 100 \
153
+ --epochs 200 \
154
+ --log_every 1 \
155
+ --results_dir ./results/toy_finetune_lora
156
+ ```
157
+
158
+ After training, you can use the following command to generate images:
159
+ ```python
160
+ from OmniGen import OmniGenPipeline
161
+
162
+ pipe = OmniGenPipeline.from_pretrained("Shitao/OmniGen-v1")
163
+ pipe.merge_lora("checkpoint_path") # e.g., ./results/toy_finetune_lora/checkpoints/0000200
164
+
165
+ images = pipe(
166
+ prompt="a photo of sks dog running in the snow",
167
+ height=1024,
168
+ width=1024,
169
+ guidance_scale=3
170
+ )
171
+ images[0].save("example_sks_dog_snow.png")
172
+ ```
docs/inference.md ADDED
@@ -0,0 +1,96 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Inference with OmniGen
2
+
3
+ To handle some complex tasks, image generation models are becoming increasingly sophisticated, leading to more and more cumbersome workflows. Existing image generation models like SD and Flux require loading many additional network modules (such as ControlNet, IP-Adapter, Reference-Net) and extra preprocessing steps (e.g., face detection, pose detection, image cropping) to generate a satisfactory image. This complex workflow is not user-friendly. We believe that future image generation models should be simpler, generating various images directly through instructions, similar to how GPT works in language generation.
4
+
5
+ Therefore, we propose OmniGen, a model capable of handling various image generation tasks within a single framework. The goal of OmniGen is to complete various image generation tasks without relying on any additional components or image preprocessing steps. OmniGen supports tasks including text-to-image generation, image editing, subject-driven image generation, and classical vision tasks, among others. More capabilities can be found in our examples. We provide inference code so you can explore more unknown functionalities yourself.
6
+
7
+
8
+
9
+ ## Install
10
+ ```bash
11
+ git clone https://github.com/staoxiao/OmniGen.git
12
+ cd OmniGen
13
+ pip install -e .
14
+ ```
15
+
16
+
17
+
18
+ ## Generate Images
19
+ You can use the following code to generate images:
20
+ ```python
21
+ from OmniGen import OmniGenPipeline
22
+
23
+ pipe = OmniGenPipeline.from_pretrained("Shitao/OmniGen-v1")
24
+
25
+ # Text to Image
26
+ images = pipe(
27
+ prompt="A curly-haired man in a red shirt is drinking tea.",
28
+ height=1024,
29
+ width=1024,
30
+ guidance_scale=2.5,
31
+ seed=0,
32
+ )
33
+ images[0].save("example_t2i.png") # save output PIL Image
34
+
35
+ # Multi-modal to Image
36
+ # In prompt, we use the placeholder to represent the image. The image placeholder should be in the format of <img><|image_*|></img>
37
+ # You can add multiple images in the input_images. Please ensure that each image has its placeholder. For example, for the list input_images [img1_path, img2_path], the prompt needs to have two placeholders: <img><|image_1|></img>, <img><|image_2|></img>.
38
+ images = pipe(
39
+ prompt="A man in a black shirt is reading a book. The man is the right man in <img><|image_1|></img>."
40
+ input_images=["./imgs/test_cases/two_man.jpg"]
41
+ height=1024,
42
+ width=1024,
43
+ separate_cfg_infer=False, # if OOM, you can set separate_cfg_infer=True
44
+ guidance_scale=2.5,
45
+ img_guidance_scale=1.6
46
+ )
47
+ images[0].save("example_ti2i.png") # save output PIL image
48
+ ```
49
+
50
+ Some important arguments:
51
+ - `guidance_scale`: The strength of the guidance. Based on our experience, it is usually best to set it between 2 and 3. The higher the value, the more similar the generated image will be to the prompt. If the image appears oversaturated, please reduce the scale.
52
+ - `height` and `width`: The height and width of the generated image. The default value is 1024x1024. OmniGen support any size, but these number must be divisible by 16.
53
+ - `num_inference_steps`: The number of steps to take in the diffusion process. The higher the value, the more detailed the generated image will be.
54
+ - `separate_cfg_infer`: Whether to use separate inference process for CFG guidance. If set to True, memory cost will be lower but the generation speed will be slower. Default is False.
55
+ - `use_kv_cache`: Whether to use key-value cache. Default is True.
56
+ - `seed`: The seed for random number generator.
57
+
58
+ **More examples please refer to [inference.ipynb](../inference.ipynb)**
59
+
60
+
61
+ #### Input data
62
+ OmniGen can accept multi-modal input data. Specifically, you should pass two arguments: `prompt` and `input_images`.
63
+ For text to image generation, you can pass a string as `prompt`, or pass a list of strings as `prompt` to generate multiple images.
64
+
65
+ For multi-modal to image generation, you should pass a string as `prompt`, and a list of image paths as `input_images`. The placeholder in the prompt should be in the format of `<img><|image_*|></img>`.
66
+ For example, if you want to generate an image with a person holding a bouquet of flowers, you can pass the following prompt:
67
+ ```
68
+ prompt = "A woman holds a bouquet of flowers and faces the camera. Thw woman is <img><|image_1|></img>."
69
+ input_images = ["./imgs/test_cases/liuyifei.png"]
70
+ ```
71
+ The placeholder `<|image_1|>` will be replaced by the image at `input_images[0]`, i.e., `./imgs/test_cases/liuyifei.png`.
72
+
73
+ If you want to generate multiple images, you can pass a list of prompts and a list of image paths. For example:
74
+ ```
75
+ prompt = ["A woman holds a bouquet of flowers and faces the camera.", "A woman holds a bouquet of flowers and faces the camera. Thw woman is <img><|image_1|></img>."]
76
+ input_images = [[], ["./imgs/test_cases/liuyifei.png"]]
77
+ ```
78
+
79
+
80
+ #### Gradio Demo
81
+ We have constructed a online demo in [Huggingface](https://huggingface.co/spaces/Shitao/OmniGen).
82
+
83
+ For the local gradio demo, you can run with the following command:
84
+ ```python
85
+ python app.py
86
+ ```
87
+
88
+
89
+ ## Tips
90
+ - OOM issue: If you encounter OOM issue, you can try to set `separate_cfg_infer=True`. This will reduce the memory usage but increase the generation latecy. You also can reduce the size of the image, e.g., `height=768, width=512`.
91
+ - Oversaturated: If the image appears oversaturated, please reduce the `guidance_scale`.
92
+ - Not match the prompt: If the image does not match the prompt, please try to increase the `guidance_scale`.
93
+ - Low-quality: More detailed prompt will lead to better results. Besides, larger size of the image (`height` and `width`) will also help.
94
+ - Animate Style: If the genereate images is in animate style, you can try to add `photo` to the prompt`.
95
+ - Edit generated image. If you generate a image by omnigen and then want to edit it, you cannot use the same seed to edit this image. For example, use seed=0 to generate image, and should use seed=1 to edit this image.
96
+ - For image editing tasks, we recommend placing the image before the editing instruction. For example, use `<img><|image_1|></img> remove suit`, rather than `remove suit <img><|image_1|></img>`.
imgs/.DS_Store ADDED
Binary file (6.15 kB). View file
 
imgs/demo_cases.png ADDED

Git LFS Details

  • SHA256: 0517c97c947f8226f0f39b4ca2ac61b058e52faa59ec5085668062d0162dd21e
  • Pointer size: 132 Bytes
  • Size of remote file: 3.42 MB
imgs/demo_cases/AI_Pioneers.jpg ADDED
imgs/demo_cases/edit.png ADDED

Git LFS Details

  • SHA256: a83fc3b2ab185a93cb10d207a8776f3a04dc187739d87816cfb33f52d46af502
  • Pointer size: 132 Bytes
  • Size of remote file: 1.24 MB
imgs/demo_cases/entity.png ADDED

Git LFS Details

  • SHA256: 5e18387fa43989515fd18dcb4ce8edeab0e32aa539d6c14ce374cb5790d8f64b
  • Pointer size: 132 Bytes
  • Size of remote file: 1.28 MB
imgs/demo_cases/reasoning.png ADDED

Git LFS Details

  • SHA256: eb510edcb5628c0def3871cef2e0351acc578a1ceef445ebbd72f8b6eb92fc9d
  • Pointer size: 132 Bytes
  • Size of remote file: 1.24 MB
imgs/demo_cases/same_pose.png ADDED

Git LFS Details

  • SHA256: beccbeabfc408f319661d9af1063005cbc21c977ba50b910491611ca3babd876
  • Pointer size: 132 Bytes
  • Size of remote file: 1.36 MB
imgs/demo_cases/skeletal.png ADDED
imgs/demo_cases/skeletal2img.png ADDED

Git LFS Details

  • SHA256: 86c21341018bb633f364d40afbf361b5e5690bf1e6539b99150e4aea0ed695b6
  • Pointer size: 132 Bytes
  • Size of remote file: 1.28 MB
imgs/demo_cases/t2i_woman_with_book.png ADDED

Git LFS Details

  • SHA256: 624ae749478b4ced358c6482385fd35271cbfe25eea0581d2a323bffebde8b39
  • Pointer size: 132 Bytes
  • Size of remote file: 1.25 MB
imgs/overall.jpg ADDED

Git LFS Details

  • SHA256: ffa229632ac0bb248eee87cf823a0dc18c22c0a81a57d4c639e7fb1986d4e029
  • Pointer size: 132 Bytes
  • Size of remote file: 1.13 MB
imgs/referring.png ADDED

Git LFS Details

  • SHA256: a626b45c09ca3fa0ff78149bc63f0dc6bc1153125ca083ab21ae2dea9ad798cf
  • Pointer size: 132 Bytes
  • Size of remote file: 4.09 MB
imgs/test_cases/1.jpg ADDED

Git LFS Details

  • SHA256: d2dad7a81a5c609d136fbcccc2a71007c20474103d301ae5564fa63258b4a492
  • Pointer size: 132 Bytes
  • Size of remote file: 1.87 MB
imgs/test_cases/2.jpg ADDED

Git LFS Details

  • SHA256: 919ec1a20515ce921d04a5a0f6dcbe5aa4288f41c04cc62a0bd59103957b45db
  • Pointer size: 132 Bytes
  • Size of remote file: 1.15 MB
imgs/test_cases/3.jpg ADDED

Git LFS Details

  • SHA256: c8fef6b304efc3fc189991ec28b83bbe15c391af55b2bfd85276eb19d49194c9
  • Pointer size: 132 Bytes
  • Size of remote file: 1.2 MB
imgs/test_cases/4.jpg ADDED

Git LFS Details

  • SHA256: 222e844198656a13facbf0f0afe327b074641a7f20d4120418fa1302e61db538
  • Pointer size: 132 Bytes
  • Size of remote file: 1.74 MB
imgs/test_cases/Amanda.jpg ADDED

Git LFS Details

  • SHA256: c20a508b8619fca4d963f574bca51c7460f274218507c97c2853fa6eaea6d0cb
  • Pointer size: 132 Bytes
  • Size of remote file: 1.65 MB
imgs/test_cases/control.jpg ADDED

Git LFS Details

  • SHA256: 5ca485995cb5f4b1b792e39a99e9647745291f92689eb40f1da925f19dfdc1b5
  • Pointer size: 132 Bytes
  • Size of remote file: 1.32 MB
imgs/test_cases/icl1.jpg ADDED
imgs/test_cases/icl2.jpg ADDED
imgs/test_cases/icl3.jpg ADDED
imgs/test_cases/lecun.png ADDED
imgs/test_cases/mckenna.jpg ADDED

Git LFS Details

  • SHA256: bd20a5841f84114859e46c4000d9b8035a40378b5d40fbb2b559864813cd402f
  • Pointer size: 132 Bytes
  • Size of remote file: 1.78 MB
imgs/test_cases/pose.png ADDED
imgs/test_cases/rose.jpg ADDED