File size: 17,331 Bytes
3d845fb
13fb76e
3d845fb
13fb76e
 
 
 
 
 
 
3d845fb
 
13fb76e
3d845fb
13fb76e
 
 
3d845fb
13fb76e
3d845fb
13fb76e
3d845fb
 
 
 
13fb76e
 
 
 
 
3d845fb
 
 
 
 
 
 
 
 
13fb76e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3d845fb
13fb76e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3d845fb
13fb76e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3d845fb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13fb76e
 
3d845fb
13fb76e
 
 
 
 
 
3d845fb
13fb76e
 
 
 
 
 
3d845fb
 
13fb76e
 
 
 
 
 
 
3d845fb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e0195cb
13fb76e
3d845fb
13fb76e
 
3d845fb
13fb76e
3d845fb
 
 
 
 
13fb76e
 
 
 
 
 
3d845fb
13fb76e
 
 
3d845fb
13fb76e
e0195cb
 
 
 
13fb76e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3d845fb
 
13fb76e
 
 
 
 
 
 
 
 
 
 
 
 
 
3d845fb
13fb76e
 
 
 
3d845fb
13fb76e
3d845fb
13fb76e
 
 
 
 
3d845fb
 
 
13fb76e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3d845fb
 
 
 
13fb76e
 
 
 
 
3d845fb
 
 
13fb76e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3d845fb
 
13fb76e
3d845fb
13fb76e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3d845fb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13fb76e
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
import os
import shutil
import subprocess
from pathlib import Path
from time import time
from typing import List, Tuple, Union

import gradio as gr
import numpy as np
import pandas as pd
from preprocessing import pretty_print
from symptoms_categories import SYMPTOMS_LIST

from concrete.ml.common.serialization.loaders import load
from concrete.ml.deployment import FHEModelClient, FHEModelDev, FHEModelServer
from concrete.ml.sklearn import XGBClassifier as ConcreteXGBoostClassifier

INPUT_BROWSER_LIMIT = 635

# This repository's main necessary folders
REPO_DIR = Path(__file__).parent
MODEL_PATH = REPO_DIR / "client_folder"
KEYS_PATH = REPO_DIR / ".fhe_keys"
CLIENT_PATH = MODEL_PATH / "client.zip"
SERVER_PATH = MODEL_PATH / "server.zip"

# subprocess.Popen(["uvicorn", "server:app"], cwd=REPO_DIR)
# time.sleep(3)


def clean_directory():
    target_dir = ".fhe_keys"
    if os.path.exists(target_dir) and os.path.isdir(target_dir):
        shutil.rmtree(target_dir)
        print("The .fhe_keys directory and its contents have been successfully removed.")
    else:
        print("The .keys directory does not exist.")


def load_data():
    # Load data
    df_train = pd.read_csv("./data/Training_preprocessed.csv")
    df_test = pd.read_csv("./data/Testing_preprocessed.csv")

    # Separate the traget from the training set
    # df['prognosis] contains the name of the disease
    # df['y] contains the numeric label of the disease

    y_train = df_train["y"]
    X_train = df_train.drop(columns=["y", "prognosis"], axis=1, errors="ignore")

    y_test = df_train["y"]
    X_test = df_test.drop(columns=["y", "prognosis"], axis=1, errors="ignore")

    return (df_train, X_train, X_test), (df_test, y_train, y_test)


def load_model(X_train, y_train):
    concrete_args = {"max_depth": 1, "n_bits": 3, "n_estimators": 3, "n_jobs": -1}
    classifier = ConcreteXGBoostClassifier(**concrete_args)
    classifier.fit(X_train, y_train)
    circuit = classifier.compile(X_train)

    return classifier, circuit


def get_user_vect_symptoms_from_checkboxgroup(*user_symptoms) -> np.array:
    symptoms_vector = {key: 0 for key in VALID_COLUMNS}

    for symptom_box in user_symptoms:
        for pretty_symptom in symptom_box:
            symptom = "_".join((pretty_symptom.lower().split(" ")))
            if symptom not in symptoms_vector.keys():
                raise KeyError(
                    f"The symptom '{symptom}' you provided is not recognized as a valid "
                    f"symptom.\nHere is the list of valid symptoms: {symptoms_vector}"
                )
            symptoms_vector[symptom] = 1.0

    user_symptoms_vect = np.fromiter(symptoms_vector.values(), dtype=float)[np.newaxis, :]

    assert all(value == 0 or value == 1 for value in user_symptoms_vect.flatten())

    return user_symptoms_vect


def get_user_vector_from_default_disease(disease):

    user_symptom_vector = df_test[df_test["prognosis"] == disease].iloc[0].values

    user_symptoms_vect = np.fromiter(user_symptom_vector[:-2], dtype=float)[np.newaxis, :]

    assert all(value == 0 or value == 1 for value in user_symptoms_vect.flatten())

    return user_symptoms_vect


def get_user_symptoms_from_default_disease(disease):
    df_filtred = df_test[df_test["prognosis"] == disease]
    columns_with_1 = df_filtred.columns[df_filtred.eq(1).any()].to_list()
    return pretty_print(columns_with_1)


def get_user_symptoms_vector_fn(selected_default_disease, *selected_symptoms):

    # Display an error box, if:
    # 1. The user has already selected a default disease and added more symptoms, or
    # 2. The the user has not selected a default disease or symptoms
    if (
        any(lst for lst in selected_symptoms if lst)
        and (selected_default_disease is not None and len(selected_default_disease) > 0)
        and set(pretty_print(selected_symptoms))
        - set(get_user_symptoms_from_default_disease(selected_default_disease))
    ) or (
        not any(lst for lst in selected_symptoms if lst)
        and (
            selected_default_disease is None
            or (selected_default_disease is not None and len(selected_default_disease) < 1)
        )
    ):
        return {
            error_box_1: gr.update(
                visible=True, value="Enter a default disease or select your own symptoms"
            ),
        }
    # Case 1: The user has checked his own symptoms
    if any(lst for lst in selected_symptoms if lst):
        return {
            error_box_1: gr.update(visible=False),
            user_vector_textbox: get_user_vect_symptoms_from_checkboxgroup(*selected_symptoms),
        }

    # Case 2: The user has selected a default disease
    if selected_default_disease is not None and len(selected_default_disease) > 0:
        return {
            user_vector_textbox: get_user_vector_from_default_disease(selected_default_disease),
            error_box_1: gr.update(visible=False),
            **{
                box: get_user_symptoms_from_default_disease(selected_default_disease)
                for box in check_boxes
            },
        }


def key_gen_fn(user_symptoms):

    print("Cleaning directory ...")
    clean_directory()

    if user_symptoms is None or (user_symptoms is not None and len(user_symptoms) < 1):
        print("Please submit your symptoms first")
        return {
            error_box_2: gr.update(visible=True, value="Please submit your symptoms first"),
        }

    # Key serialization
    user_id = np.random.randint(0, 2**32)

    client = FHEModelClient(path_dir=MODEL_PATH, key_dir=KEYS_PATH / f"{user_id}")
    client.load()

    # The client first need to create the private and evaluation keys.

    client.generate_private_and_evaluation_keys()

    # Get the serialized evaluation keys
    serialized_evaluation_keys = client.get_serialized_evaluation_keys()
    assert isinstance(serialized_evaluation_keys, bytes)

    # np.save(f".fhe_keys/{user_id}/eval_key.npy", serialized_evaluation_keys)
    evaluation_key_path = KEYS_PATH / f"{user_id}/evaluation_key"
    with evaluation_key_path.open("wb") as evaluation_key_file:
        evaluation_key_file.write(serialized_evaluation_keys)

    serialized_evaluation_keys_shorten_hex = serialized_evaluation_keys.hex()[:INPUT_BROWSER_LIMIT]

    return {
        error_box_2: gr.update(visible=False),
        eval_key_textbox: serialized_evaluation_keys_shorten_hex,
        user_id_textbox: user_id,
        eval_key_len_textbox: f"{len(serialized_evaluation_keys) / (10**6):.2f} MB",
    }


def encrypt_fn(user_symptoms, user_id):

    if not user_symptoms or not user_symptoms:
        return {
            error_box_3: gr.update(
                visible=True, value="Please ensure that the evaluation key has been generated!"
            )
        }

    # Retrieve the client API

    client = FHEModelClient(path_dir=MODEL_PATH, key_dir=KEYS_PATH / f"{user_id}")
    client.load()

    user_symptoms = np.fromstring(user_symptoms[2:-2], dtype=int, sep=".").reshape(1, -1)

    quant_user_symptoms = client.model.quantize_input(user_symptoms)
    encrypted_quantized_user_symptoms = client.quantize_encrypt_serialize(user_symptoms)

    encrypted_input_path = KEYS_PATH / f"{user_id}/encrypted_symptoms"

    with encrypted_input_path.open("wb") as f:
        f.write(encrypted_quantized_user_symptoms)

    # print(client.model.predict(vect_x, fhe="simulate"), client.model.predict(vect_x, fhe="execute"))
    # pred_s = client.model.fhe_circuit.simulate(quant_vect)
    # pred_fhe = client.model.fhe_circuit.encrypt_run_decrypt(quant_vect) #
    # non alpha -> \X1124, base64 ou en exa

    # Compute size

    # np.save(f".fhe_keys/{user_id}/encrypted_quant_vect.npy", encrypted_quantized_user_symptoms)

    encrypted_quantized_user_symptoms_shorten_hex = encrypted_quantized_user_symptoms.hex()[
        :INPUT_BROWSER_LIMIT
    ]

    return {
        error_box_3: gr.update(visible=False),
        vect_textbox: user_symptoms,
        quant_vect_textbox: quant_user_symptoms,
        encrypted_vect_textbox: encrypted_quantized_user_symptoms_shorten_hex,
    }


# def send_input(user_id, user_symptoms):
#     """Send the encrypted input image as well as the evaluation key to the server.

#     Args:
#         user_id (int): The current user's ID.
#         filter_name (str): The current filter to consider.
#     """
#     # Get the evaluation key path


#     evaluation_key_path = get_client_file_path("evaluation_key", user_id, filter_name)

#     if user_id == "" or not evaluation_key_path.is_file():
#         raise gr.Error("Please generate the private key first.")

#     encrypted_input_path = get_client_file_path("encrypted_image", user_id, filter_name)
#     encrypted_symptoms_path = KEYS_PATH / f"{user_id}" / "encrypted_symtoms"

#     if not encrypted_input_path.is_file():
#         raise gr.Error("Please generate the private key and then encrypt an image first.")

#     # Define the data and files to post
#     data = {
#         "user_id": user_id,
#         "filter": filter_name,
#     }

#     files = [
#         ("files", open(encrypted_input_path, "rb")),
#         ("files", open(evaluation_key_path, "rb")),
#     ]

#     # Send the encrypted input image and evaluation key to the server
#     url = SERVER_URL + "send_input"
#     with requests.post(
#         url=url,
#         data=data,
#         files=files,
#     ) as response:
#         return response.ok


# def decrypt_prediction(encrypted_quantized_vect, user_id):
#     fhe_api = FHEModelClient(path_dir=REPO_DIR, key_dir=f".fhe_keys/{user_id}")
#     fhe_api.load()
#     fhe_api.generate_private_and_evaluation_keys(force=False)
#     predictions = fhe_api.deserialize_decrypt_dequantize(encrypted_quantized_vect)
#     return predictions




def clear_all_btn():
    return {
        box_default: None,
        user_id_textbox: None,
        eval_key_textbox: None,
        quant_vect_textbox: None,
        user_vector_textbox: None,
        eval_key_len_textbox: None,
        encrypted_vect_textbox: None,
        error_box_1: gr.update(visible=False),
        error_box_2: gr.update(visible=False),
        error_box_3: gr.update(visible=False),
        **{box: None for box in check_boxes},
    }


if __name__ == "__main__":
    print("Starting demo ...")
    

    (df_train, X_train, X_test), (df_test, y_train, y_test) = load_data()

    VALID_COLUMNS = X_train.columns.to_list()

    # Load the model
    with open("ConcreteXGBoostClassifier.pkl", "r", encoding="utf-8") as file:
        concrete_classifier = load(file)

    with gr.Blocks() as demo:

        # Link + images
        gr.Markdown(
            """
    <p align="center">
        <img width=200 src="https://user-images.githubusercontent.com/5758427/197816413-d9cddad3-ba38-4793-847d-120975e1da11.png">
    </p>

    <h2 align="center">Health Prediction On Encrypted Data Using Homomorphic Encryption.</h2>

    <p align="center">
        <a href="https://github.com/zama-ai/concrete-ml"> <img style="vertical-align: middle; display:inline-block; margin-right: 3px;" width=15 src="https://user-images.githubusercontent.com/5758427/197972109-faaaff3e-10e2-4ab6-80f5-7531f7cfb08f.png">Concrete-ML</a>

        <a href="https://docs.zama.ai/concrete-ml"> <img style="vertical-align: middle; display:inline-block; margin-right: 3px;" width=15 src="https://user-images.githubusercontent.com/5758427/197976802-fddd34c5-f59a-48d0-9bff-7ad1b00cb1fb.png">Documentation</a>

        <a href="https://zama.ai/community"> <img style="vertical-align: middle; display:inline-block; margin-right: 3px;" width=15 src="https://user-images.githubusercontent.com/5758427/197977153-8c9c01a7-451a-4993-8e10-5a6ed5343d02.png">Community</a>

        <a href="https://twitter.com/zama_fhe"> <img style="vertical-align: middle; display:inline-block; margin-right: 3px;" width=15 src="https://user-images.githubusercontent.com/5758427/197975044-bab9d199-e120-433b-b3be-abd73b211a54.png">@zama_fhe</a>
    </p>

    <p align="center">
    <img src="https://raw.githubusercontent.com/kcelia/Img/main/demo-img2.png" width="60%" height="60%">
    </p>
    """
        )

        # Gentle introduction
        gr.Markdown("## Introduction")
        gr.Markdown("""Blablabla""")

        # User symptoms
        gr.Markdown("# Step 1: Provide your symptoms")
        gr.Markdown("Client side")

        # Default disease, picked from the dataframe
        with gr.Row():
            default_diseases = list(set(df_test["prognosis"]))
            box_default = gr.Dropdown(default_diseases, label="Disease")

        # Box symptoms
        check_boxes = []
        for i, category in enumerate(SYMPTOMS_LIST):
            check_box = gr.CheckboxGroup(
                pretty_print(category.values()),
                label=pretty_print(category.keys()),
                info=f"Symptoms related to `{pretty_print(category.values())}`",
                max_batch_size=45,
            )
            check_boxes.append(check_box)

        error_box_1 = gr.Textbox(label="Error", visible=False)

        # User symptom vector
        with gr.Row():
            user_vector_textbox = gr.Textbox(
                label="User symptoms (vector)",
                interactive=False,
                max_lines=100,
            )

        with gr.Row():
            # Submit botton
            with gr.Column():
                submit_button = gr.Button("Submit")
            # Clear botton
            with gr.Column():
                clear_button = gr.Button("Clear")

        # Click submit botton

        submit_button.click(
            fn=get_user_symptoms_vector_fn,
            inputs=[box_default, *check_boxes],
            outputs=[user_vector_textbox, error_box_1, *check_boxes],
        )

        gr.Markdown("# Step 2: Generate the keys")
        gr.Markdown("Client side")

        gen_key_btn = gr.Button("Generate the keys and send public part to server")

        error_box_2 = gr.Textbox(label="Error", visible=False)

        with gr.Row():
            # User ID
            with gr.Column(scale=1, min_width=600):
                user_id_textbox = gr.Textbox(
                    label="User ID:",
                    max_lines=4,
                    interactive=False,
                )
            # Evaluation key size
            with gr.Column(scale=1, min_width=600):
                eval_key_len_textbox = gr.Textbox(
                    label="Evaluation key size:", max_lines=4, interactive=False
                )

        with gr.Row():
            # Evaluation key (truncated)
            with gr.Column(scale=2, min_width=600):
                eval_key_textbox = gr.Textbox(
                    label="Evaluation key (truncated):",
                    max_lines=4,
                    interactive=False,
                )

        gen_key_btn.click(
            key_gen_fn,
            inputs=user_vector_textbox,
            outputs=[eval_key_textbox, user_id_textbox, eval_key_len_textbox, error_box_2],
        )

        gr.Markdown("# Step 3: Encode the message with the private key")
        gr.Markdown("Client side")

        encrypt_btn = gr.Button("Encode the message with the private key and send it to the server")

        error_box_3 = gr.Textbox(label="Error", visible=False)

        with gr.Row():

            with gr.Column(scale=1, min_width=600):
                vect_textbox = gr.Textbox(
                    label="Vector:",
                    max_lines=4,
                    interactive=False,
                )

            with gr.Column(scale=1, min_width=600):
                quant_vect_textbox = gr.Textbox(
                    label="Quant vector:", max_lines=4, interactive=False
                )

            with gr.Column(scale=1, min_width=600):
                encrypted_vect_textbox = gr.Textbox(
                    label="Encrypted vector:", max_lines=4, interactive=False
                )

        encrypt_btn.click(
            encrypt_fn,
            inputs=[user_vector_textbox, user_id_textbox],
            outputs=[vect_textbox, quant_vect_textbox, encrypted_vect_textbox, error_box_3],
        )

        gr.Markdown("# Step 4: Run the FHE evaluation")
        gr.Markdown("Server side")

        run_fhe = gr.Button("Run the FHE evaluation")

        gr.Markdown("# Step 5: Decrypt the sentiment")
        gr.Markdown("Server side")

        decrypt_target_botton = gr.Button("Decrypt the sentiment")
        decrypt_target_textbox = gr.Textbox(
            label="Encrypted vector:", max_lines=4, interactive=False
        )

        # decrypt_target_botton.click(
        #     decrypt_prediction,
        #     inputs=[encrypted_vect_textbox, user_id_textbox],
        #     outputs=[decrypt_target_textbox],
        # )

        clear_button.click(
            clear_all_btn,
            outputs=[
                box_default,
                error_box_1,
                error_box_2,
                error_box_3,
                user_id_textbox,
                eval_key_textbox,
                quant_vect_textbox,
                user_vector_textbox,
                eval_key_len_textbox,
                encrypted_vect_textbox,
                *check_boxes,
            ],
        )

    demo.launch()