File size: 11,758 Bytes
3f19807
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
"""LangGraph Agent"""
import os
import tempfile
import cmath
import pandas as pd
from dotenv import load_dotenv
from langgraph.graph import START, StateGraph, MessagesState
from langgraph.prebuilt import tools_condition
from langgraph.prebuilt import ToolNode
from langchain_google_genai import ChatGoogleGenerativeAI, GoogleGenerativeAIEmbeddings
from langchain_groq import ChatGroq
from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint, HuggingFaceEmbeddings
from langchain_community.tools.tavily_search import TavilySearchResults
from langchain_community.document_loaders import WikipediaLoader
from langchain_community.document_loaders import ArxivLoader
from langchain_community.vectorstores import SupabaseVectorStore
from langchain_core.messages import SystemMessage, HumanMessage
from langchain_core.tools import tool
from langchain.tools.retriever import create_retriever_tool
from supabase.client import Client, create_client
from typing import List, Dict, Any, Optional

load_dotenv()

@tool
def multiply(a: int, b: int) -> int:
    """
    Multiply two integers.
    
    Args:
        a (int): The first integer.
        b (int): The second integer.
    
    Returns:
        int: The product of a and b.
    """
    return a * b

@tool
def add(a: int, b: int) -> int:
    """
    Add two integers.
    
    Args:
        a (int): The first integer.
        b (int): The second integer.
    
    Returns:
        int: The sum of a and b.
    """
    return a + b

@tool
def subtract(a: int, b: int) -> int:
    """
    Subtract one integer from another.
    
    Args:
        a (int): The integer to subtract from.
        b (int): The integer to subtract.
    
    Returns:
        int: The result of a minus b.
    """
    return a - b

@tool
def divide(a: int, b: int) -> float:
    """
    Divide one integer by another.
    
    Args:
        a (int): The numerator.
        b (int): The denominator. Must not be zero.
    
    Returns:
        float: The result of a divided by b.
    
    Raises:
        ValueError: If b is zero.
    """
    if b == 0:
        raise ValueError("Cannot divide by zero.")
    return a / b

@tool
def modulus(a: int, b: int) -> int:
    """
    Compute the modulus (remainder) of two integers.
    
    Args:
        a (int): The dividend.
        b (int): The divisor.
    
    Returns:
        int: The remainder after dividing a by b.
    """
    return a % b

@tool
def power(a: float, b: float) -> float:
    """
    Raise a number to the power of another number.
    
    Args:
        a (float): The base number.
        b (float): The exponent.
    
    Returns:
        float: The result of a raised to the power of b.
    """
    return a**b

@tool
def square_root(a: float) -> float | complex:
    """
    Compute the square root of a number. Returns a complex number if input is negative.
    
    Args:
        a (float): The number to compute the square root of.
    
    Returns:
        float or complex: The square root of a. Complex if a < 0.
    """
    if a >= 0:
        return a**0.5
    return cmath.sqrt(a)

### =============== DOCUMENT PROCESSING TOOLS =============== ###

@tool
def save_and_read_file(content: str, filename: Optional[str] = None) -> str:
    """
    Save text content to a file and return the file path.
    
    Args:
        content (str): The text content to save.
        filename (str, optional): The name of the file. If not provided, a random name is generated.
    
    Returns:
        str: The file path where the content was saved.
    """
    temp_dir = tempfile.gettempdir()
    if filename is None:
        temp_file = tempfile.NamedTemporaryFile(delete=False, dir=temp_dir)
        filepath = temp_file.name
    else:
        filepath = os.path.join(temp_dir, filename)

    with open(filepath, "w") as f:
        f.write(content)

    return f"File saved to {filepath}. You can read this file to process its contents."

@tool
def analyze_csv_file(file_path: str, query: str) -> str:
    """
    Analyze a CSV file and answer a question about its data.
    
    Args:
        file_path (str): The path to the CSV file.
        query (str): The question to answer about the data.
    
    Returns:
        str: The analysis result or error message.
    """
    try:
        df = pd.read_csv(file_path)
        result = f"CSV file loaded with {len(df)} rows and {len(df.columns)} columns.\n"
        result += f"Columns: {', '.join(df.columns)}\n\n"
        result += "Summary statistics:\n"
        result += str(df.describe())
        return result
    except Exception as e:
        return f"Error analyzing CSV file: {str(e)}"

@tool
def analyze_excel_file(file_path: str, query: str) -> str:
    """
    Analyze an Excel file and answer a question about its data.
    
    Args:
        file_path (str): The path to the Excel file.
        query (str): The question to answer about the data.
    
    Returns:
        str: The analysis result or error message.
    """
    try:
        df = pd.read_excel(file_path)
        result = (
            f"Excel file loaded with {len(df)} rows and {len(df.columns)} columns.\n"
        )
        result += f"Columns: {', '.join(df.columns)}\n\n"
        result += "Summary statistics:\n"
        result += str(df.describe())
        return result
    except Exception as e:
        return f"Error analyzing Excel file: {str(e)}"

@tool
def wiki_search(input: str) -> str:
    """
    Search Wikipedia for a query and return up to 2 results.
    
    Args:
        input (str): The search query string.
    
    Returns:
        str: A formatted string containing up to 2 Wikipedia search results.
    """
    search_docs = WikipediaLoader(query=input, load_max_docs=2).load()
    formatted_search_docs = "\n\n---\n\n".join(
        [
            f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>'
            for doc in search_docs
        ])
    return {"wiki_results": formatted_search_docs}

@tool
def web_search(input: str) -> str:
    """
    Search the web using Tavily and return up to 5 results.
    
    Args:
        input (str): The search query string.
    
    Returns:
        str: A formatted string containing up to 5 web search results.
    """
    search_docs = TavilySearchResults(max_results=5).invoke(input)
    formatted_search_docs = "\n\n---\n\n".join(
        [
            (
                f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>'
                if hasattr(doc, "metadata") and hasattr(doc, "page_content")
                else
                f'<Document source="{doc.get("source", "")}" page="{doc.get("page", "")}"/>\n{doc.get("content", doc.get("page_content", ""))}\n</Document>'
            )
            for doc in search_docs
        ]
    )
    return {"web_results": formatted_search_docs}

@tool
def arvix_search(input: str) -> str:
    """
    Search Arxiv for a query and return up to 3 results.
    
    Args:
        input (str): The search query string.
    
    Returns:
        str: A formatted string containing up to 3 Arxiv search results.
    """
    search_docs = ArxivLoader(query=input, load_max_docs=3).load()
    formatted_search_docs = "\n\n---\n\n".join(
        [
            f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content[:1000]}\n</Document>'
            for doc in search_docs
        ])
    return {"arvix_results": formatted_search_docs}

# load the system prompt from the file
with open("system_prompt.txt", "r", encoding="utf-8") as f:
    system_prompt = f.read()

# System message
sys_msg = SystemMessage(content=system_prompt)

# build a retriever
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2") #  dim=768
#embeddings = GoogleGenerativeAIEmbeddings(model="models/gemini-embedding-exp-03-07")
supabase: Client = create_client(
    os.environ.get("SUPABASE_URL"), 
    os.environ.get("SUPABASE_SERVICE_KEY"))
vector_store = SupabaseVectorStore(
    client=supabase,
    embedding= embeddings,
    table_name="documents",
    query_name="match_documents_langchain",
)
create_retriever_tool = create_retriever_tool(
    retriever=vector_store.as_retriever(),
    name="Question Search",
    description="A tool to retrieve similar questions from a vector store.",
)

tools = [
    multiply,
    add,
    subtract,
    divide,
    modulus,
    power,
    square_root,
    wiki_search,
    web_search,
    arvix_search,
    save_and_read_file,
    analyze_csv_file,
    analyze_excel_file,
    # create_retriever_tool
]

# Build graph function
def build_graph(provider: str = "groq"):
    """Build the graph"""
    # Load environment variables from .env file
    if provider == "google":
        # Google Gemini
        llm = ChatGoogleGenerativeAI(model="gemini-2.0-flash", temperature=0)
    elif provider == "groq":
        # Groq https://console.groq.com/docs/models
        llm = ChatGroq(model="qwen-qwq-32b", temperature=0) # optional : qwen-qwq-32b gemma2-9b-it
    elif provider == "huggingface":
        # TODO: Add huggingface endpoint
        llm = ChatHuggingFace(
            llm=HuggingFaceEndpoint(
                url="https://api-inference.huggingface.co/models/Meta-DeepLearning/llama-2-7b-chat-hf",
                temperature=0,
            ),
        )
    else:
        raise ValueError("Invalid provider. Choose 'google', 'groq' or 'huggingface'.")
    # Bind tools to LLM
    llm_with_tools = llm.bind_tools(tools)

    # Node
    def assistant(state: MessagesState):
        """Assistant node"""
        return {"messages": [llm_with_tools.invoke(state["messages"])]}
    
    def retriever(state: MessagesState):
        """Retriever node"""
        similar_question = vector_store.similarity_search(state["messages"][0].content)
        # similar_question = "What is the surname of the equine veterinarian mentioned in 1.E Exercises from the chemistry materials licensed by Marisa Alviar-Agnew & Henry Agnew under the CK-12 license in LibreText's Introductory Chemistry materials as compiled 08/21/2023?"
        if similar_question:
            example_msg = HumanMessage(
                content=f"Here I provide a similar question and answer for reference: \n\n{similar_question[0].page_content}",
            )
        else:
            example_msg = HumanMessage(
                content="No similar questions found in the database.",
            )
        return {"messages": [sys_msg] + state["messages"] + [example_msg]}

    builder = StateGraph(MessagesState)
    builder.add_node("retriever", retriever)
    builder.add_node("assistant", assistant)
    builder.add_node("tools", ToolNode(tools))
    builder.add_edge(START, "retriever")
    builder.add_edge("retriever", "assistant")
    builder.add_conditional_edges(
        "assistant",
        tools_condition,
    )
    builder.add_edge("tools", "assistant")

    # Compile graph
    return builder.compile()

# test
if __name__ == "__main__":
    #question = "When was a picture of St. Thomas Aquinas first added to the Wikipedia page on the Principle of double effect?"
    question = "What is the surname of the equine veterinarian mentioned in 1.E Exercises from the chemistry materials licensed by Marisa Alviar-Agnew & Henry Agnew under the CK-12 license in LibreText's Introductory Chemistry materials as compiled 08/21/2023?"
    # Build the graph
    graph = build_graph(provider="google")
    # Run the graph
    messages = [HumanMessage(content=question)]
    messages = graph.invoke({"messages": messages})
    for m in messages["messages"]:
        m.pretty_print()