File size: 11,758 Bytes
3f19807 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 |
"""LangGraph Agent"""
import os
import tempfile
import cmath
import pandas as pd
from dotenv import load_dotenv
from langgraph.graph import START, StateGraph, MessagesState
from langgraph.prebuilt import tools_condition
from langgraph.prebuilt import ToolNode
from langchain_google_genai import ChatGoogleGenerativeAI, GoogleGenerativeAIEmbeddings
from langchain_groq import ChatGroq
from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint, HuggingFaceEmbeddings
from langchain_community.tools.tavily_search import TavilySearchResults
from langchain_community.document_loaders import WikipediaLoader
from langchain_community.document_loaders import ArxivLoader
from langchain_community.vectorstores import SupabaseVectorStore
from langchain_core.messages import SystemMessage, HumanMessage
from langchain_core.tools import tool
from langchain.tools.retriever import create_retriever_tool
from supabase.client import Client, create_client
from typing import List, Dict, Any, Optional
load_dotenv()
@tool
def multiply(a: int, b: int) -> int:
"""
Multiply two integers.
Args:
a (int): The first integer.
b (int): The second integer.
Returns:
int: The product of a and b.
"""
return a * b
@tool
def add(a: int, b: int) -> int:
"""
Add two integers.
Args:
a (int): The first integer.
b (int): The second integer.
Returns:
int: The sum of a and b.
"""
return a + b
@tool
def subtract(a: int, b: int) -> int:
"""
Subtract one integer from another.
Args:
a (int): The integer to subtract from.
b (int): The integer to subtract.
Returns:
int: The result of a minus b.
"""
return a - b
@tool
def divide(a: int, b: int) -> float:
"""
Divide one integer by another.
Args:
a (int): The numerator.
b (int): The denominator. Must not be zero.
Returns:
float: The result of a divided by b.
Raises:
ValueError: If b is zero.
"""
if b == 0:
raise ValueError("Cannot divide by zero.")
return a / b
@tool
def modulus(a: int, b: int) -> int:
"""
Compute the modulus (remainder) of two integers.
Args:
a (int): The dividend.
b (int): The divisor.
Returns:
int: The remainder after dividing a by b.
"""
return a % b
@tool
def power(a: float, b: float) -> float:
"""
Raise a number to the power of another number.
Args:
a (float): The base number.
b (float): The exponent.
Returns:
float: The result of a raised to the power of b.
"""
return a**b
@tool
def square_root(a: float) -> float | complex:
"""
Compute the square root of a number. Returns a complex number if input is negative.
Args:
a (float): The number to compute the square root of.
Returns:
float or complex: The square root of a. Complex if a < 0.
"""
if a >= 0:
return a**0.5
return cmath.sqrt(a)
### =============== DOCUMENT PROCESSING TOOLS =============== ###
@tool
def save_and_read_file(content: str, filename: Optional[str] = None) -> str:
"""
Save text content to a file and return the file path.
Args:
content (str): The text content to save.
filename (str, optional): The name of the file. If not provided, a random name is generated.
Returns:
str: The file path where the content was saved.
"""
temp_dir = tempfile.gettempdir()
if filename is None:
temp_file = tempfile.NamedTemporaryFile(delete=False, dir=temp_dir)
filepath = temp_file.name
else:
filepath = os.path.join(temp_dir, filename)
with open(filepath, "w") as f:
f.write(content)
return f"File saved to {filepath}. You can read this file to process its contents."
@tool
def analyze_csv_file(file_path: str, query: str) -> str:
"""
Analyze a CSV file and answer a question about its data.
Args:
file_path (str): The path to the CSV file.
query (str): The question to answer about the data.
Returns:
str: The analysis result or error message.
"""
try:
df = pd.read_csv(file_path)
result = f"CSV file loaded with {len(df)} rows and {len(df.columns)} columns.\n"
result += f"Columns: {', '.join(df.columns)}\n\n"
result += "Summary statistics:\n"
result += str(df.describe())
return result
except Exception as e:
return f"Error analyzing CSV file: {str(e)}"
@tool
def analyze_excel_file(file_path: str, query: str) -> str:
"""
Analyze an Excel file and answer a question about its data.
Args:
file_path (str): The path to the Excel file.
query (str): The question to answer about the data.
Returns:
str: The analysis result or error message.
"""
try:
df = pd.read_excel(file_path)
result = (
f"Excel file loaded with {len(df)} rows and {len(df.columns)} columns.\n"
)
result += f"Columns: {', '.join(df.columns)}\n\n"
result += "Summary statistics:\n"
result += str(df.describe())
return result
except Exception as e:
return f"Error analyzing Excel file: {str(e)}"
@tool
def wiki_search(input: str) -> str:
"""
Search Wikipedia for a query and return up to 2 results.
Args:
input (str): The search query string.
Returns:
str: A formatted string containing up to 2 Wikipedia search results.
"""
search_docs = WikipediaLoader(query=input, load_max_docs=2).load()
formatted_search_docs = "\n\n---\n\n".join(
[
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>'
for doc in search_docs
])
return {"wiki_results": formatted_search_docs}
@tool
def web_search(input: str) -> str:
"""
Search the web using Tavily and return up to 5 results.
Args:
input (str): The search query string.
Returns:
str: A formatted string containing up to 5 web search results.
"""
search_docs = TavilySearchResults(max_results=5).invoke(input)
formatted_search_docs = "\n\n---\n\n".join(
[
(
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>'
if hasattr(doc, "metadata") and hasattr(doc, "page_content")
else
f'<Document source="{doc.get("source", "")}" page="{doc.get("page", "")}"/>\n{doc.get("content", doc.get("page_content", ""))}\n</Document>'
)
for doc in search_docs
]
)
return {"web_results": formatted_search_docs}
@tool
def arvix_search(input: str) -> str:
"""
Search Arxiv for a query and return up to 3 results.
Args:
input (str): The search query string.
Returns:
str: A formatted string containing up to 3 Arxiv search results.
"""
search_docs = ArxivLoader(query=input, load_max_docs=3).load()
formatted_search_docs = "\n\n---\n\n".join(
[
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content[:1000]}\n</Document>'
for doc in search_docs
])
return {"arvix_results": formatted_search_docs}
# load the system prompt from the file
with open("system_prompt.txt", "r", encoding="utf-8") as f:
system_prompt = f.read()
# System message
sys_msg = SystemMessage(content=system_prompt)
# build a retriever
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2") # dim=768
#embeddings = GoogleGenerativeAIEmbeddings(model="models/gemini-embedding-exp-03-07")
supabase: Client = create_client(
os.environ.get("SUPABASE_URL"),
os.environ.get("SUPABASE_SERVICE_KEY"))
vector_store = SupabaseVectorStore(
client=supabase,
embedding= embeddings,
table_name="documents",
query_name="match_documents_langchain",
)
create_retriever_tool = create_retriever_tool(
retriever=vector_store.as_retriever(),
name="Question Search",
description="A tool to retrieve similar questions from a vector store.",
)
tools = [
multiply,
add,
subtract,
divide,
modulus,
power,
square_root,
wiki_search,
web_search,
arvix_search,
save_and_read_file,
analyze_csv_file,
analyze_excel_file,
# create_retriever_tool
]
# Build graph function
def build_graph(provider: str = "groq"):
"""Build the graph"""
# Load environment variables from .env file
if provider == "google":
# Google Gemini
llm = ChatGoogleGenerativeAI(model="gemini-2.0-flash", temperature=0)
elif provider == "groq":
# Groq https://console.groq.com/docs/models
llm = ChatGroq(model="qwen-qwq-32b", temperature=0) # optional : qwen-qwq-32b gemma2-9b-it
elif provider == "huggingface":
# TODO: Add huggingface endpoint
llm = ChatHuggingFace(
llm=HuggingFaceEndpoint(
url="https://api-inference.huggingface.co/models/Meta-DeepLearning/llama-2-7b-chat-hf",
temperature=0,
),
)
else:
raise ValueError("Invalid provider. Choose 'google', 'groq' or 'huggingface'.")
# Bind tools to LLM
llm_with_tools = llm.bind_tools(tools)
# Node
def assistant(state: MessagesState):
"""Assistant node"""
return {"messages": [llm_with_tools.invoke(state["messages"])]}
def retriever(state: MessagesState):
"""Retriever node"""
similar_question = vector_store.similarity_search(state["messages"][0].content)
# similar_question = "What is the surname of the equine veterinarian mentioned in 1.E Exercises from the chemistry materials licensed by Marisa Alviar-Agnew & Henry Agnew under the CK-12 license in LibreText's Introductory Chemistry materials as compiled 08/21/2023?"
if similar_question:
example_msg = HumanMessage(
content=f"Here I provide a similar question and answer for reference: \n\n{similar_question[0].page_content}",
)
else:
example_msg = HumanMessage(
content="No similar questions found in the database.",
)
return {"messages": [sys_msg] + state["messages"] + [example_msg]}
builder = StateGraph(MessagesState)
builder.add_node("retriever", retriever)
builder.add_node("assistant", assistant)
builder.add_node("tools", ToolNode(tools))
builder.add_edge(START, "retriever")
builder.add_edge("retriever", "assistant")
builder.add_conditional_edges(
"assistant",
tools_condition,
)
builder.add_edge("tools", "assistant")
# Compile graph
return builder.compile()
# test
if __name__ == "__main__":
#question = "When was a picture of St. Thomas Aquinas first added to the Wikipedia page on the Principle of double effect?"
question = "What is the surname of the equine veterinarian mentioned in 1.E Exercises from the chemistry materials licensed by Marisa Alviar-Agnew & Henry Agnew under the CK-12 license in LibreText's Introductory Chemistry materials as compiled 08/21/2023?"
# Build the graph
graph = build_graph(provider="google")
# Run the graph
messages = [HumanMessage(content=question)]
messages = graph.invoke({"messages": messages})
for m in messages["messages"]:
m.pretty_print()
|