File size: 14,854 Bytes
d863531
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
"""
This file provides coarse stage LETR definition
Modified based on https://github.com/facebookresearch/detr/blob/master/models/backbone.py
"""
import torch
import torch.nn.functional as F
from torch import nn

from .misc import (NestedTensor, nested_tensor_from_tensor_list,
                       accuracy, get_world_size, interpolate,
                       is_dist_avail_and_initialized)

from .backbone import build_backbone
from .matcher import build_matcher
from .transformer import build_transformer
from .letr_stack import LETRstack
import numpy as np

class LETR(nn.Module):
    """ This is the LETR module that performs object detection """
    def __init__(self, backbone, transformer, num_classes, num_queries, args, aux_loss=False):
        super().__init__()
        self.num_queries = num_queries
        self.transformer = transformer
        hidden_dim = transformer.d_model
        self.class_embed = nn.Linear(hidden_dim, num_classes + 1)

        self.lines_embed  =  MLP(hidden_dim, hidden_dim, 4, 3)
        self.query_embed = nn.Embedding(num_queries, hidden_dim)

        channel = [256, 512, 1024, 2048]
        self.input_proj = nn.Conv2d(channel[args.layer1_num], hidden_dim, kernel_size=1)

        self.backbone = backbone
        self.aux_loss = aux_loss
        self.args = args

    def forward(self, samples, postprocessors=None, targets=None, criterion=None):
        if isinstance(samples, (list, torch.Tensor)):
            samples = nested_tensor_from_tensor_list(samples)

        features, pos = self.backbone(samples)

        num = self.args.layer1_num
        src, mask = features[num].decompose()
        assert mask is not None
        hs = self.transformer(self.input_proj(src), mask, self.query_embed.weight, pos[num])[0]

        outputs_class = self.class_embed(hs)
        outputs_coord = self.lines_embed(hs).sigmoid()
        out = {'pred_logits': outputs_class[-1], 'pred_lines': outputs_coord[-1]}
        if self.aux_loss:
            out['aux_outputs'] = self._set_aux_loss(outputs_class, outputs_coord)
        return out

    @torch.jit.unused
    def _set_aux_loss(self, outputs_class, outputs_coord):
        return [{'pred_logits': a, 'pred_lines': b} for a, b in zip(outputs_class[:-1], outputs_coord[:-1])]

class SetCriterion(nn.Module):

    def __init__(self, num_classes, weight_dict, eos_coef, losses, args, matcher=None):

        super().__init__()
        self.num_classes = num_classes

        self.matcher = matcher

        self.weight_dict = weight_dict
        self.eos_coef = eos_coef
        self.losses = losses
        empty_weight = torch.ones(self.num_classes + 1)
        empty_weight[-1] = self.eos_coef
        self.register_buffer('empty_weight', empty_weight)
        self.args = args
        try:
            self.args.label_loss_params = eval(self.args.label_loss_params)  # Convert the string to dict.
        except:
            pass

    def loss_lines_labels(self, outputs, targets,  num_items,  log=False, origin_indices=None):
        """Classification loss (NLL)
        targets dicts must contain the key "labels" containing a tensor of dim [nb_target_lines]
        """
        assert 'pred_logits' in outputs
        src_logits = outputs['pred_logits']

        idx = self._get_src_permutation_idx(origin_indices)
        target_classes_o = torch.cat([t["labels"][J] for t, (_, J) in zip(targets, origin_indices)])
        target_classes = torch.full(src_logits.shape[:2], self.num_classes,
                                    dtype=torch.int64, device=src_logits.device)
        target_classes[idx] = target_classes_o

        if self.args.label_loss_func == 'cross_entropy':
            loss_ce = F.cross_entropy(src_logits.transpose(1, 2), target_classes, self.empty_weight)
        elif self.args.label_loss_func == 'focal_loss':
            loss_ce = self.label_focal_loss(src_logits.transpose(1, 2), target_classes, self.empty_weight, **self.args.label_loss_params)
        else:
            raise ValueError()

        losses = {'loss_ce': loss_ce}
        return losses

    def label_focal_loss(self, input, target, weight, gamma=2.0):
        """ Focal loss for label prediction. """
        # In our case, target has 2 classes: 0 for foreground (i.e. line) and 1 for background.
        # The weight here can serve as the alpha hyperparameter in focal loss. However, in focal loss, 
        # 
        # Ref: https://github.com/facebookresearch/DETR/blob/699bf53f3e3ecd4f000007b8473eda6a08a8bed6/models/segmentation.py#L190
        # Ref: https://medium.com/visionwizard/understanding-focal-loss-a-quick-read-b914422913e7

        # input shape: [batch size, #classes, #queries]
        # target shape: [batch size, #queries]
        # weight shape: [#classes]

        prob = F.softmax(input, 1)                                          # Shape: [batch size, #classes, #queries].
        ce_loss = F.cross_entropy(input, target, weight, reduction='none')  # Shape: [batch size, #queries].
        p_t = prob[:,1,:] * target + prob[:,0,:] * (1 - target)             # Shape: [batch size, #queries]. Note: prob[:,0,:] + prob[:,1,:] should be 1.
        loss = ce_loss * ((1 - p_t) ** gamma)
        loss = loss.mean()    # Original label loss (i.e. cross entropy) does not consider the #lines, so we also do not consider that.
        return loss

    @torch.no_grad()
    def loss_cardinality(self, outputs, targets,  num_items, origin_indices=None):
        """ Compute the cardinality error, ie the absolute error in the number of predicted non-empty lines
        This is not really a loss, it is intended for logging purposes only. It doesn't propagate gradients
        """
        pred_logits = outputs['pred_logits']
        device = pred_logits.device
        tgt_lengths = torch.as_tensor([len(v["labels"]) for v in targets], device=device)
        # Count the number of predictions that are NOT "no-object" (which is the last class)
        card_pred = (pred_logits.argmax(-1) != pred_logits.shape[-1] - 1).sum(1)
        card_err = F.l1_loss(card_pred.float(), tgt_lengths.float())
        losses = {'cardinality_error': card_err}
        return losses

    def loss_lines_POST(self, outputs, targets, num_items, origin_indices=None):
        assert 'POST_pred_lines' in outputs

        if outputs['POST_pred_lines'].shape[1] == 1000:
            idx = self._get_src_permutation_idx(origin_indices)

            src_lines = outputs['POST_pred_lines'][idx]
            
        else:
            src_lines = outputs['POST_pred_lines'].squeeze(0)


        target_lines = torch.cat([t['lines'][i] for t, (_, i) in zip(targets, origin_indices)], dim=0)

        loss_line = F.l1_loss(src_lines, target_lines, reduction='none')

        losses = {}
        losses['loss_line'] = loss_line.sum() / num_items

        return losses

    def loss_lines(self, outputs, targets, num_items, origin_indices=None):
        assert 'pred_lines' in outputs

        idx = self._get_src_permutation_idx(origin_indices)

        src_lines = outputs['pred_lines'][idx]
        target_lines = torch.cat([t['lines'][i] for t, (_, i) in zip(targets, origin_indices)], dim=0)

        loss_line = F.l1_loss(src_lines, target_lines, reduction='none')

        losses = {}
        losses['loss_line'] = loss_line.sum() / num_items

        return losses

    def _get_src_permutation_idx(self, indices):
        # permute predictions following indices
        batch_idx = torch.cat([torch.full_like(src, i) for i, (src, _) in enumerate(indices)])
        src_idx = torch.cat([src for (src, _) in indices])
        return batch_idx, src_idx

    def _get_tgt_permutation_idx(self, indices):
        # permute targets following indices
        batch_idx = torch.cat([torch.full_like(tgt, i) for i, (_, tgt) in enumerate(indices)])
        tgt_idx = torch.cat([tgt for (_, tgt) in indices])
        return batch_idx, tgt_idx

    def get_loss(self, loss, outputs, targets, num_items, **kwargs):
        
        loss_map = {
            'POST_lines_labels': self.loss_lines_labels,
            'POST_lines': self.loss_lines,
            'lines_labels': self.loss_lines_labels,
            'cardinality': self.loss_cardinality,
            'lines': self.loss_lines,
        }
        assert loss in loss_map, f'do you really want to compute {loss} loss?'
        return loss_map[loss](outputs, targets, num_items, **kwargs)

    def forward(self, outputs, targets, origin_indices=None):
        """ This performs the loss computation.
        Parameters:
             outputs: dict of tensors, see the output specification of the model for the format
             targets: list of dicts, such that len(targets) == batch_size.
                      The expected keys in each dict depends on the losses applied, see each loss' doc
        """
        outputs_without_aux = {k: v for k, v in outputs.items() if k != 'aux_outputs'}

        
        origin_indices = self.matcher(outputs_without_aux, targets)


        num_items = sum(len(t["labels"]) for t in targets)

        num_items = torch.as_tensor([num_items], dtype=torch.float, device=next(iter(outputs.values())).device)
        if is_dist_avail_and_initialized():
            torch.distributed.all_reduce(num_items)
        num_items = torch.clamp(num_items / get_world_size(), min=1).item()

        # Compute all the requested losses
        losses = {}
        for loss in self.losses:
            losses.update(self.get_loss(loss, outputs, targets,  num_items, origin_indices=origin_indices))
            

        # In case of auxiliary losses, we repeat this process with the output of each intermediate layer.
        aux_name = 'aux_outputs'
        if aux_name in outputs:
            for i, aux_outputs in enumerate(outputs[aux_name]):
                
                origin_indices = self.matcher(aux_outputs, targets)

                for loss in self.losses:
                    
                    kwargs = {}
                    if loss == 'labels':
                        # Logging is enabled only for the last layer
                        kwargs = {'log': False}

                    l_dict = self.get_loss(loss, aux_outputs, targets, num_items, origin_indices=origin_indices, **kwargs)

                    l_dict = {k + f'_{i}': v for k, v in l_dict.items()}
                    losses.update(l_dict)

        return losses


class PostProcess_Line(nn.Module):

    """ This module converts the model's output into the format expected by the coco api"""
    @torch.no_grad()
    def forward(self, outputs, target_sizes, output_type):
        """ Perform the computation
        Parameters:
            outputs: raw outputs of the model
            target_sizes: tensor of dimension [batch_size x 2] containing the size of each images of the batch
                          For evaluation, this must be the original image size (before any data augmentation)
                          For visualization, this should be the image size after data augment, but before padding
        """
        if output_type == "prediction":
            out_logits, out_line = outputs['pred_logits'], outputs['pred_lines']

            assert len(out_logits) == len(target_sizes)
            assert target_sizes.shape[1] == 2

            prob = F.softmax(out_logits, -1)
            scores, labels = prob[..., :-1].max(-1)

            # convert to [x0, y0, x1, y1] format
            img_h, img_w = target_sizes.unbind(1)

            scale_fct = torch.stack([img_w, img_h, img_w, img_h], dim=1)
            lines = out_line * scale_fct[:, None, :]

            results = [{'scores': s, 'labels': l, 'lines': b} for s, l, b in zip(scores, labels, lines)]
        elif output_type == "prediction_POST":
            out_logits, out_line = outputs['pred_logits'], outputs['POST_pred_lines']

            assert len(out_logits) == len(target_sizes)
            assert target_sizes.shape[1] == 2

            prob = F.softmax(out_logits, -1)
            scores, labels = prob[..., :-1].max(-1)

            # convert to [x0, y0, x1, y1] format
            img_h, img_w = target_sizes.unbind(1)

            scale_fct = torch.stack([img_w, img_h, img_w, img_h], dim=1)
            lines = out_line * scale_fct[:, None, :]

            results = [{'scores': s, 'labels': l, 'lines': b} for s, l, b in zip(scores, labels, lines)]
        elif output_type == "ground_truth":
            results = []
            for dic in outputs:
                lines = dic['lines']
                img_h, img_w = target_sizes.unbind(1)
                scale_fct = torch.stack([img_w, img_h, img_w, img_h], dim=1)
                scaled_lines = lines * scale_fct
                results.append({'labels': dic['labels'], 'lines': scaled_lines, 'image_id': dic['image_id']})
        else:
            assert False
        return results


class MLP(nn.Module):
    """ Very simple multi-layer perceptron (also called FFN)"""

    def __init__(self, input_dim, hidden_dim, output_dim, num_layers):
        super().__init__()
        self.num_layers = num_layers
        h = [hidden_dim] * (num_layers - 1)
        self.layers = nn.ModuleList(nn.Linear(n, k) for n, k in zip([input_dim] + h, h + [output_dim]))

    def forward(self, x):
        for i, layer in enumerate(self.layers):
            x = F.relu(layer(x)) if i < self.num_layers - 1 else layer(x)
        return x


def build(args):
    num_classes = 1

    device = torch.device(args.device)
    
    backbone = build_backbone(args)

    transformer = build_transformer(args)

    model = LETR(
        backbone,
        transformer,
        num_classes=num_classes,
        num_queries=args.num_queries,
        args=args,
        aux_loss=args.aux_loss,
    )

    if args.LETRpost:
        model = LETRstack(model, args=args)


    matcher = build_matcher(args, type='origin_line')
    
    losses = []
    weight_dict = {}
    
    if args.LETRpost: 
        losses.append('POST_lines_labels')
        losses.append('POST_lines')
        weight_dict['loss_ce'] = 1
        weight_dict['loss_line'] = args.line_loss_coef
        aux_layer = args.second_dec_layers
    else:
        losses.append('lines_labels')
        losses.append('lines')
        weight_dict['loss_ce'] = 1
        weight_dict['loss_line'] = args.line_loss_coef
        aux_layer = args.dec_layers

    if args.aux_loss:
        aux_weight_dict = {}
        for i in range(aux_layer - 1):
            aux_weight_dict.update({k + f'_{i}': v for k, v in weight_dict.items()})
        weight_dict.update(aux_weight_dict)

    
    criterion = SetCriterion(num_classes, weight_dict=weight_dict, eos_coef=args.eos_coef, losses=losses, args=args, matcher=matcher)
    criterion.to(device)


    postprocessors = {'line': PostProcess_Line()}


    return model, criterion, postprocessors