File size: 2,607 Bytes
82ef366
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
from dataclasses import dataclass
from pathlib import Path
from typing import NamedTuple, Optional


class Range(NamedTuple):
    start: int
    end: int


@dataclass
class RunConfig:
    # Appearance image path
    app_image_path: Path
    # Struct image path
    struct_image_path: Path
    # Domain name (e.g., buildings, animals)
    domain_name: Optional[str] = None
    # Output path
    output_path: Path = Path('./output')
    # Random seed
    seed: int = 42
    # Input prompt for inversion (will use domain name as default)
    prompt: Optional[str] = None
    # Number of timesteps
    num_timesteps: int = 100
    # Whether to use a binary mask for performing AdaIN
    use_masked_adain: bool = True
    # Timesteps to apply cross-attention on 64x64 layers
    cross_attn_64_range: Range = Range(start=10, end=90)
    # Timesteps to apply cross-attention on 32x32 layers
    cross_attn_32_range: Range = Range(start=10, end=70)
    # Timesteps to apply AdaIn
    adain_range: Range = Range(start=20, end=100)
    # Guidance scale
    guidance_scale: float = 7.5
    # Swap guidance scale
    swap_guidance_scale: float = 3.5
    # Attention contrasting strength
    contrast_strength: float = 1.67
    # Object nouns to use for self-segmentation (will use the domain name as default)
    object_noun: Optional[str] = None
    # Whether to load previously saved inverted latent codes
    load_latents: bool = True
    # Number of steps to skip in the denoising process (used value from original edit-friendly DDPM paper)
    skip_steps: int = 32

    def __post_init__(self):
        self.output_path = self.output_path / self.domain_name
        self.output_path.mkdir(parents=True, exist_ok=True)

        # Handle the domain name, prompt, and object nouns used for masking, etc.
        if self.use_masked_adain and self.domain_name is None:
            raise ValueError("Must provide --domain_name and --prompt when using masked AdaIN")
        if not self.use_masked_adain and self.domain_name is None:
            self.domain_name = "object"
        if self.prompt is None:
            self.prompt = f"A photo of a {self.domain_name}"
        if self.object_noun is None:
            self.object_noun = self.domain_name

        # Define the paths to store the inverted latents to
        self.latents_path = Path(self.output_path) / "latents"
        self.latents_path.mkdir(parents=True, exist_ok=True)
        self.app_latent_save_path = self.latents_path / f"{self.app_image_path.stem}.pt"
        self.struct_latent_save_path = self.latents_path / f"{self.struct_image_path.stem}.pt"