File size: 26,528 Bytes
e868605
 
4942755
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0a9a024
 
 
4942755
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0a9a024
 
 
4942755
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0a9a024
 
4942755
 
 
 
 
 
 
 
 
 
 
 
0a9a024
4942755
 
 
 
 
 
0a9a024
4942755
 
 
 
 
0a9a024
4942755
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
15b7466
 
 
 
4942755
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
15b7466
 
 
4942755
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0a9a024
4942755
 
 
 
 
 
0a9a024
4942755
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0a9a024
4942755
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
import spaces

import subprocess
import re
from typing import List, Tuple, Optional

import gradio as gr
from datetime import datetime
import os
os.environ["TORCH_CUDNN_SDPA_ENABLED"] = "0,1,2,3,4,5,6,7"
import torch
import numpy as np
import cv2
import matplotlib.pyplot as plt
from PIL import Image, ImageFilter
from sam2.build_sam import build_sam2_video_predictor

from moviepy.editor import ImageSequenceClip

# Description
title = "<center><strong><font size='8'>Efficient Track Anything (EfficientTAM)<font></strong></center>"

description_e = """This is a demo of [Efficient Track Anything (EfficientTAM) Model](https://github.com/yformer/EfficientTAM).
              """

description_p = """# Interactive Video Segmentation
                - Built our demo based on [SAM2-Video-Predictor](https://huggingface.co/spaces/fffiloni/SAM2-Video-Predictor). Thanks to Sylvain Filoni.
                - Instruction
                <ol>
                <li> Upload one video or click one example video</li>
                <li> Click 'include' point type, select the object to segment and track</li>
                <li> Click 'exclude' point type (optional), select the area you want to avoid segmenting and tracking</li>
                <li> Click the 'Segment' button, obtain the mask of the first frame </li>
                <li> Click the 'coarse' level and the 'Track' button, segment and track the object every 15 frames </li>
                <li> Click the corresponding frame to add points on the object for mask refining (optional) </li>
                <li> Click the 'fine' level and the 'Track' button, obtain masklet and masked video </li>
                <li> Click the 'Reset' button to restart </li>
                </ol>
                - Github [link](https://github.com/yformer/EfficientTAM)
              """

# examples
examples = [
    ["examples/videos/cat.mp4"],
    ["examples/videos/coffee.mp4"],
    ["examples/videos/car.mp4"],
    ["examples/videos/chick.mp4"],
    ["examples/videos/cups.mp4"],
    ["examples/videos/dog.mp4"],
    ["examples/videos/goat.mp4"],
    ["examples/videos/juggle.mp4"],
    ["examples/videos/street.mp4"],
    ["examples/videos/yacht.mp4"],
]

default_example = examples[0]

def get_video_fps(video_path):
    # Open the video file
    cap = cv2.VideoCapture(video_path)
    
    if not cap.isOpened():
        print("Error: Could not open video.")
        return None
    
    # Get the FPS of the video
    fps = cap.get(cv2.CAP_PROP_FPS)

    return fps

def clear_points(image):
    # we clean all
    return [
        image,   # first_frame_path
        gr.State([]),      # tracking_points
        gr.State([]),      # trackings_input_label
        image,   # points_map
    ]

@spaces.GPU
@torch.inference_mode()
@torch.autocast(device_type="cuda", dtype=torch.bfloat16)
def preprocess_video_in(video_path):
    if video_path is None:
        return None, gr.State([]), gr.State([]), None, None, None, None, None, None, gr.update(open=True)

    # Generate a unique ID based on the current date and time
    unique_id = datetime.now().strftime('%Y%m%d%H%M%S')
    
    # Set directory with this ID to store video frames 
    extracted_frames_output_dir = f'frames_{unique_id}'
    
    # Create the output directory
    os.makedirs(extracted_frames_output_dir, exist_ok=True)

    ### Process video frames ###
    # Open the video file
    cap = cv2.VideoCapture(video_path)
    
    if not cap.isOpened():
        print("Error: Could not open video.")
        return None

    # Get the frames per second (FPS) of the video
    fps = cap.get(cv2.CAP_PROP_FPS)
    
    # Calculate the number of frames to process (10 seconds of video)
    max_frames = int(fps * 10)
    
    frame_number = 0
    first_frame = None
    
    while True:
        ret, frame = cap.read()
        if not ret or frame_number >= max_frames:
            break
        
        # Format the frame filename as '00000.jpg'
        frame_filename = os.path.join(extracted_frames_output_dir, f'{frame_number:05d}.jpg')
        
        # Save the frame as a JPEG file
        cv2.imwrite(frame_filename, frame)
        
        # Store the first frame
        if frame_number == 0:
            first_frame = frame_filename
        
        frame_number += 1
    
    # Release the video capture object
    cap.release()
    
    # scan all the JPEG frame names in this directory
    scanned_frames = [
        p for p in os.listdir(extracted_frames_output_dir)
        if os.path.splitext(p)[-1] in [".jpg", ".jpeg", ".JPG", ".JPEG"]
    ]
    scanned_frames.sort(key=lambda p: int(os.path.splitext(p)[0]))
    # print(f"SCANNED_FRAMES: {scanned_frames}")
    
    return [
        first_frame,           # first_frame_path
        gr.State([]),          # tracking_points
        gr.State([]),          # trackings_input_label
        first_frame,           # input_first_frame_image
        first_frame,           # points_map
        extracted_frames_output_dir,            # video_frames_dir
        scanned_frames,        # scanned_frames
        None,                  # stored_inference_state
        None,                  # stored_frame_names
        gr.update(open=False)  # video_in_drawer
    ]


@spaces.GPU
@torch.inference_mode()
@torch.autocast(device_type="cuda", dtype=torch.bfloat16)
def get_point(point_type, tracking_points, trackings_input_label, input_first_frame_image, evt: gr.SelectData):
    if input_first_frame_image is None:
        return gr.State([]), gr.State([]), None
    print(f"You selected {evt.value} at {evt.index} from {evt.target}")

    tracking_points.value.append(evt.index)
    print(f"TRACKING POINT: {tracking_points.value}")

    if point_type == "include":
        trackings_input_label.value.append(1)
    elif point_type == "exclude":
        trackings_input_label.value.append(0)
    print(f"TRACKING INPUT LABEL: {trackings_input_label.value}")
    
    # Open the image and get its dimensions
    transparent_background = Image.open(input_first_frame_image).convert('RGBA')
    w, h = transparent_background.size
    
    # Define the circle radius as a fraction of the smaller dimension
    fraction = 0.02  # You can adjust this value as needed
    radius = int(fraction * min(w, h))
    
    # Create a transparent layer to draw on
    transparent_layer = np.zeros((h, w, 4), dtype=np.uint8)
    
    for index, track in enumerate(tracking_points.value):
        if trackings_input_label.value[index] == 1:
            cv2.circle(transparent_layer, track, radius, (0, 255, 0, 255), -1)
        else:
            cv2.circle(transparent_layer, track, radius, (255, 0, 0, 255), -1)

    # Convert the transparent layer back to an image
    transparent_layer = Image.fromarray(transparent_layer, 'RGBA')
    selected_point_map = Image.alpha_composite(transparent_background, transparent_layer)
    
    return tracking_points, trackings_input_label, selected_point_map

DEVICE = 'cuda'
# use bfloat16 for the entire notebook
torch.autocast(device_type="cuda", dtype=torch.bfloat16).__enter__()
if torch.cuda.get_device_properties(0).major >= 8:
    # turn on tfloat32 for Ampere GPUs (https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices)
    torch.backends.cuda.matmul.allow_tf32 = True
    torch.backends.cudnn.allow_tf32 = True

@spaces.GPU
def show_mask(mask, ax, obj_id=None, random_color=False):
    if random_color:
        color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0)
    else:
        cmap = plt.get_cmap("tab10")
        cmap_idx = 0 if obj_id is None else obj_id
        color = np.array([*cmap(cmap_idx)[:3], 0.6])
    h, w = mask.shape[-2:]
    mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1)
    ax.axis('off')
    ax.imshow(mask_image)

@spaces.GPU
def show_points(coords, labels, ax, marker_size=200):
    pos_points = coords[labels==1]
    neg_points = coords[labels==0]
    ax.scatter(pos_points[:, 0], pos_points[:, 1], color='green', marker='*', s=marker_size, edgecolor='white', linewidth=1.25)
    ax.scatter(neg_points[:, 0], neg_points[:, 1], color='red', marker='*', s=marker_size, edgecolor='white', linewidth=1.25)

@spaces.GPU
def show_box(box, ax):
    x0, y0 = box[0], box[1]
    w, h = box[2] - box[0], box[3] - box[1]
    ax.add_patch(plt.Rectangle((x0, y0), w, h, edgecolor='green', facecolor=(0, 0, 0, 0), lw=2))    

@spaces.GPU
def load_model(checkpoint):
    # Load model accordingly to user's choice
    if checkpoint == "efficienttam_s":
        efficienttam_checkpoint = "./checkpoints/efficienttam_s.pt"
        model_cfg = "efficienttam_s.yaml"
        return [efficienttam_checkpoint, model_cfg]
    elif checkpoint == "efficienttam_ti":
        efficienttam_checkpoint = "./checkpoints/efficienttam_ti.pt"
        model_cfg = "efficienttam-ti.yaml"
        return [efficienttam_checkpoint, model_cfg]
    elif checkpoint == "efficienttam_s_512x512":
        efficienttam_checkpoint = "./checkpoints/efficienttam_s_512x512.pt"
        model_cfg = "efficienttam_s_512x512.yaml"
        return [efficienttam_checkpoint, model_cfg]
    elif checkpoint == "efficienttam_ti_512x512":
        efficienttam_checkpoint = "./checkpoints/efficienttam_ti_512x512.pt"
        model_cfg = "efficienttam_ti_512x512.yaml"
        return [efficienttam_checkpoint, model_cfg]
    elif checkpoint == "efficienttam_s_1":
        efficienttam_checkpoint = "./checkpoints/efficienttam_s_1.pt"
        model_cfg = "efficienttam_s_1.yaml"
        return [efficienttam_checkpoint, model_cfg]
    elif checkpoint == "efficienttam_s_2":
        efficienttam_checkpoint = "./checkpoints/efficienttam_s_2.pt"
        model_cfg = "efficienttam_s_2.yaml"
        return [efficienttam_checkpoint, model_cfg]
    elif checkpoint == "efficienttam_ti_1":
        efficienttam_checkpoint = "./checkpoints/efficienttam_ti_1.pt"
        model_cfg = "efficienttam_ti_1.yaml"
        return [efficienttam_checkpoint, model_cfg]
    elif checkpoint == "efficienttam_ti_2":
        efficienttam_checkpoint = "./checkpoints/efficienttam_ti_2.pt"
        model_cfg = "efficienttam_ti_2.yaml"
        return [efficienttam_checkpoint, model_cfg]
    else:
        efficienttam_checkpoint = "./checkpoints/demo/efficienttam_s.pt"
        model_cfg = "efficienttam_s.yaml"
        return [efficienttam_checkpoint, model_cfg]

@spaces.GPU
@torch.inference_mode()
@torch.autocast(device_type="cuda", dtype=torch.bfloat16)
def get_mask_sam_process(
    stored_inference_state,
    input_first_frame_image, 
    checkpoint, 
    tracking_points, 
    trackings_input_label, 
    video_frames_dir, # extracted_frames_output_dir defined in 'preprocess_video_in' function
    scanned_frames, 
    working_frame: str = None, # current frame being added points
    available_frames_to_check: List[str] = [],
):

    if len(tracking_points.value) == 0:
        return gr.update(visible=False), None, gr.State(), None, stored_inference_state, working_frame
    # get model and model config paths
    print(f"USER CHOSEN CHECKPOINT: {checkpoint}")
    sam2_checkpoint, model_cfg = load_model(checkpoint)
    print("MODEL LOADED")

    # set predictor 
    predictor = build_sam2_video_predictor(model_cfg, sam2_checkpoint, device="cuda")
    print("PREDICTOR READY")

    # `video_dir` a directory of JPEG frames with filenames like `<frame_index>.jpg`
    # print(f"STATE FRAME OUTPUT DIRECTORY: {video_frames_dir}")
    video_dir = video_frames_dir
    
    # scan all the JPEG frame names in this directory
    frame_names = scanned_frames

    # print(f"STORED INFERENCE STEP: {stored_inference_state}")
    if stored_inference_state is None:
        # Init SAM2 inference_state
        inference_state = predictor.init_state(video_path=video_dir, device="cuda")
        print("NEW INFERENCE_STATE INITIATED")
    else:
        inference_state = stored_inference_state

    # segment and track one object
    # predictor.reset_state(inference_state) # if any previous tracking, reset

    ### HANDLING WORKING FRAME
    # new_working_frame = None
    # Add new point
    if working_frame is None:
        ann_frame_idx = 0  # the frame index we interact with, 0 if it is the first frame
        working_frame = "frame_0.jpg"
    else:
        # Use a regular expression to find the integer
        match = re.search(r'frame_(\d+)', working_frame)
        if match:
            # Extract the integer from the match
            frame_number = int(match.group(1))
            ann_frame_idx = frame_number
            
    print(f"NEW_WORKING_FRAME PATH: {working_frame}")
    
    ann_obj_id = 1  # give a unique id to each object we interact with (it can be any integers)
    
    # Let's add a positive click at (x, y) = (210, 350) to get started
    points = np.array(tracking_points.value, dtype=np.float32)
    # for labels, `1` means positive click and `0` means negative click
    labels = np.array(trackings_input_label.value, np.int32)
    _, out_obj_ids, out_mask_logits = predictor.add_new_points(
        inference_state=inference_state,
        frame_idx=ann_frame_idx,
        obj_id=ann_obj_id,
        points=points,
        labels=labels,
    )

    # Create the plot
    plt.figure(figsize=(12, 8))
    plt.title(f"frame {ann_frame_idx}")
    plt.imshow(Image.open(os.path.join(video_dir, frame_names[ann_frame_idx])))
    show_points(points, labels, plt.gca())
    show_mask((out_mask_logits[0] > 0.0).cpu().numpy(), plt.gca(), obj_id=out_obj_ids[0])
    
    # Save the plot as a JPG file
    first_frame_output_filename = "output_first_frame.jpg"
    plt.savefig(first_frame_output_filename, format='jpg')
    plt.close()
    torch.cuda.empty_cache()

    # Assuming available_frames_to_check.value is a list
    if working_frame not in available_frames_to_check:
        available_frames_to_check.append(working_frame)
        print(available_frames_to_check)
    
    return gr.update(visible=True), "output_first_frame.jpg", frame_names, predictor, inference_state, gr.update(choices=available_frames_to_check, value=working_frame, visible=True)

@spaces.GPU
@torch.inference_mode()
@torch.autocast(device_type="cuda", dtype=torch.bfloat16)
def propagate_to_all(tracking_points, video_in, checkpoint, stored_inference_state, stored_frame_names, video_frames_dir, vis_frame_type, available_frames_to_check, working_frame):
    if tracking_points is None or video_in is None or checkpoint is None or stored_inference_state is None:
        return gr.update(value=None), gr.update(value=None), gr.update(value=None), available_frames_to_check, gr.update(visible=False)
    #### PROPAGATION ####
    sam2_checkpoint, model_cfg = load_model(checkpoint)
    predictor = build_sam2_video_predictor(model_cfg, sam2_checkpoint, device="cuda")
    
    inference_state = stored_inference_state
    frame_names = stored_frame_names
    video_dir = video_frames_dir
    
    # Define a directory to save the JPEG images
    frames_output_dir = "frames_output_images"
    os.makedirs(frames_output_dir, exist_ok=True)
    
    # Initialize a list to store file paths of saved images
    jpeg_images = []

    # run propagation throughout the video and collect the results in a dict
    video_segments = {}  # video_segments contains the per-frame segmentation results
    print("starting propagate_in_video")
    for out_frame_idx, out_obj_ids, out_mask_logits in predictor.propagate_in_video(inference_state):
        video_segments[out_frame_idx] = {
            out_obj_id: (out_mask_logits[i] > 0.0).cpu().numpy()
            for i, out_obj_id in enumerate(out_obj_ids)
        }    
    
    # obtain the segmentation results every few frames
    if vis_frame_type == "coarse":
        vis_frame_stride = 15
    elif vis_frame_type == "fine":
        vis_frame_stride = 1
    
    plt.close("all")
    for out_frame_idx in range(0, len(frame_names), vis_frame_stride):
        plt.figure(figsize=(6, 4))
        plt.title(f"frame {out_frame_idx}")
        plt.imshow(Image.open(os.path.join(video_dir, frame_names[out_frame_idx])))
        for out_obj_id, out_mask in video_segments[out_frame_idx].items():
            show_mask(out_mask, plt.gca(), obj_id=out_obj_id)

        # Define the output filename and save the figure as a JPEG file
        output_filename = os.path.join(frames_output_dir, f"frame_{out_frame_idx}.jpg")
        plt.savefig(output_filename, format='jpg')
    
        # Close the plot
        plt.close()

        # Append the file path to the list
        jpeg_images.append(output_filename)

        if f"frame_{out_frame_idx}.jpg" not in available_frames_to_check:
            available_frames_to_check.append(f"frame_{out_frame_idx}.jpg")

    torch.cuda.empty_cache()
    print(f"JPEG_IMAGES: {jpeg_images}")

    if vis_frame_type == "coarse":
        return gr.update(value=jpeg_images), gr.update(value=None), gr.update(choices=available_frames_to_check, value=working_frame, visible=True), available_frames_to_check, gr.update(visible=True)
    elif vis_frame_type == "fine":
        # Create a video clip from the image sequence
        original_fps = get_video_fps(video_in)
        fps = original_fps  # Frames per second
        total_frames = len(jpeg_images)
        clip = ImageSequenceClip(jpeg_images, fps=fps)
        # Write the result to a file
        final_vid_output_path = "output_video.mp4"
        
        # Write the result to a file
        clip.write_videofile(
            final_vid_output_path,
            codec='libx264'
        )
        
        return gr.update(value=None), gr.update(value=final_vid_output_path), working_frame, available_frames_to_check, gr.update(visible=True)

@spaces.GPU
def update_ui(vis_frame_type):
    if vis_frame_type == "coarse":
        return gr.update(visible=True), gr.update(visible=False)
    elif vis_frame_type == "fine":
        return gr.update(visible=False), gr.update(visible=True)

@spaces.GPU
def switch_working_frame(working_frame, scanned_frames, video_frames_dir):
    new_working_frame = None
    if working_frame == None:
        new_working_frame = os.path.join(video_frames_dir, scanned_frames[0])
        
    else:
        # Use a regular expression to find the integer
        match = re.search(r'frame_(\d+)', working_frame)
        if match:
            # Extract the integer from the match
            frame_number = int(match.group(1))
            ann_frame_idx = frame_number
            new_working_frame = os.path.join(video_frames_dir, scanned_frames[ann_frame_idx])
    return gr.State([]), gr.State([]), new_working_frame, new_working_frame

@spaces.GPU
def reset_propagation(first_frame_path, predictor, stored_inference_state):
    predictor.reset_state(stored_inference_state)
    # print(f"RESET State: {stored_inference_state} ")
    return first_frame_path, gr.State([]), gr.State([]), gr.update(value=None, visible=False), stored_inference_state, None, ["frame_0.jpg"], first_frame_path, "frame_0.jpg", gr.update(visible=False)
    
with gr.Blocks() as demo:
    first_frame_path = gr.State()
    tracking_points = gr.State([])
    trackings_input_label = gr.State([])
    video_frames_dir = gr.State()
    scanned_frames = gr.State()
    loaded_predictor = gr.State()
    stored_inference_state = gr.State()
    stored_frame_names = gr.State()
    available_frames_to_check = gr.State([])
    with gr.Column():
        # Title
        gr.Markdown(title)
        with gr.Row():
            
            with gr.Column():
                # Instructions
                gr.Markdown(description_p)

                # video_exp = gr.Video(label="Input Example", format="mp4", visible=False)
                with gr.Accordion("Input Video", open=True) as video_in_drawer:
                    video_in = gr.Video(label="Input Video", format="mp4")
                
                with gr.Row():
                    point_type = gr.Radio(label="point type", choices=["include", "exclude"], value="include", scale=2)
                    clear_points_btn = gr.Button("Clear Points", scale=1)
                
                input_first_frame_image = gr.Image(label="input image", interactive=False, type="filepath", visible=False)                 
                
                points_map = gr.Image(
                    label="Frame with Point Prompt", 
                    type="filepath",
                    interactive=False
                )

                with gr.Row():
                    checkpoint = gr.Dropdown(label="Checkpoint", choices=["efficienttam_s", "efficienttam_ti", "efficienttam_s_512x512", "efficienttam_ti_512x512", "efficienttam_s_1", "efficienttam_s_2", "efficienttam_ti_1", "efficienttam_ti_2"], value="efficienttam_s")
                    submit_btn = gr.Button("Segment", size="lg")
                
            
            with gr.Column():
                gr.Markdown("# Try some of the examples below ⬇️")
                gr.Examples(
                    examples=examples,
                    inputs=[video_in,],
                )
                gr.Markdown('\n\n\n\n\n\n\n\n\n\n\n')
                gr.Markdown('\n\n\n\n\n\n\n\n\n\n\n')
                gr.Markdown('\n\n\n\n\n\n\n\n\n\n\n')
                with gr.Row():
                    working_frame = gr.Dropdown(label="Frame ID", choices=[""], value=None, visible=False, allow_custom_value=False, interactive=True)
                    change_current = gr.Button("change current", visible=False)
                output_result = gr.Image(label="Reference Mask")
                with gr.Row():
                    vis_frame_type = gr.Radio(label="Track level", choices=["coarse", "fine"], value="coarse", scale=2)
                    propagate_btn = gr.Button("Track", scale=1)
                reset_prpgt_brn = gr.Button("Reset", visible=False)
                output_propagated = gr.Gallery(label="Masklets", columns=4, visible=False)
                output_video = gr.Video(visible=False)
    
    

    # When new video is uploaded
    video_in.upload(
        fn = preprocess_video_in, 
        inputs = [video_in], 
        outputs = [
            first_frame_path, 
            tracking_points, # update Tracking Points in the gr.State([]) object
            trackings_input_label, # update Tracking Labels in the gr.State([]) object
            input_first_frame_image, # hidden component used as ref when clearing points
            points_map, # Image component where we add new tracking points
            video_frames_dir, # Array where frames from video_in are deep stored
            scanned_frames, # Scanned frames by EfficientTAM
            stored_inference_state, # EfficientTAM inference state
            stored_frame_names, # 
            video_in_drawer, # Accordion to hide uploaded video player
        ],
        queue = False
    )

    video_in.change(
        fn = preprocess_video_in, 
        inputs = [video_in], 
        outputs = [
            first_frame_path, 
            tracking_points, # update Tracking Points in the gr.State([]) object
            trackings_input_label, # update Tracking Labels in the gr.State([]) object
            input_first_frame_image, # hidden component used as ref when clearing points
            points_map, # Image component where we add new tracking points
            video_frames_dir, # Array where frames from video_in are deep stored
            scanned_frames, # Scanned frames by EfficientTAM
            stored_inference_state, # EfficientTAM inference state
            stored_frame_names, # 
            video_in_drawer, # Accordion to hide uploaded video player
        ],
        queue = False
    )

    
    # triggered when we click on image to add new points
    points_map.select(
        fn = get_point, 
        inputs = [
            point_type, # "include" or "exclude"
            tracking_points, # get tracking_points values
            trackings_input_label, # get tracking label values
            input_first_frame_image, # gr.State() first frame path
        ], 
        outputs = [
            tracking_points, # updated with new points
            trackings_input_label, # updated with corresponding labels
            points_map, # updated image with points
        ], 
        queue = False
    )

    # Clear every points clicked and added to the map
    clear_points_btn.click(
        fn = clear_points,
        inputs = input_first_frame_image, # we get the untouched hidden image
        outputs = [
            first_frame_path, 
            tracking_points, 
            trackings_input_label, 
            points_map, 
        ],
        queue=False
    )

    
    change_current.click(
        fn = switch_working_frame,
        inputs = [working_frame, scanned_frames, video_frames_dir],
        outputs = [tracking_points, trackings_input_label, input_first_frame_image, points_map],
        queue=False
    )
    

    submit_btn.click(
        fn = get_mask_sam_process,
        inputs = [
            stored_inference_state,
            input_first_frame_image, 
            checkpoint, 
            tracking_points, 
            trackings_input_label, 
            video_frames_dir, 
            scanned_frames, 
            working_frame,
            available_frames_to_check,
        ],
        outputs = [
            change_current,
            output_result, 
            stored_frame_names, 
            loaded_predictor,
            stored_inference_state,
            working_frame,
        ],
        concurrency_limit=10,
        queue=False
    )

    reset_prpgt_brn.click(
        fn = reset_propagation,
        inputs = [first_frame_path, loaded_predictor, stored_inference_state],
        outputs = [points_map, tracking_points, trackings_input_label, output_propagated, stored_inference_state, output_result, available_frames_to_check, input_first_frame_image, working_frame, reset_prpgt_brn],
        queue=False
    )

    propagate_btn.click(
        fn = update_ui,
        inputs = [vis_frame_type],
        outputs = [output_propagated, output_video],
        queue=False
    ).then(
        fn = propagate_to_all,
        inputs = [tracking_points, video_in, checkpoint, stored_inference_state, stored_frame_names, video_frames_dir, vis_frame_type, available_frames_to_check, working_frame],
        outputs = [output_propagated, output_video, working_frame, available_frames_to_check, reset_prpgt_brn],
        concurrency_limit=10,
        queue=False
    )

demo.queue()
demo.launch()