Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -257,7 +257,10 @@ def load_model(checkpoint):
|
|
257 |
efficienttam_checkpoint = "./checkpoints/demo/efficienttam_s.pt"
|
258 |
model_cfg = "efficienttam_s.yaml"
|
259 |
return [efficienttam_checkpoint, model_cfg]
|
260 |
-
|
|
|
|
|
|
|
261 |
def get_mask_sam_process(
|
262 |
stored_inference_state,
|
263 |
input_first_frame_image,
|
@@ -349,6 +352,9 @@ def get_mask_sam_process(
|
|
349 |
|
350 |
return gr.update(visible=True), "output_first_frame.jpg", frame_names, predictor, inference_state, gr.update(choices=available_frames_to_check, value=working_frame, visible=True)
|
351 |
|
|
|
|
|
|
|
352 |
def propagate_to_all(tracking_points, video_in, checkpoint, stored_inference_state, stored_frame_names, video_frames_dir, vis_frame_type, available_frames_to_check, working_frame):
|
353 |
if tracking_points is None or video_in is None or checkpoint is None or stored_inference_state is None:
|
354 |
return gr.update(value=None), gr.update(value=None), gr.update(value=None), available_frames_to_check, gr.update(visible=False)
|
|
|
257 |
efficienttam_checkpoint = "./checkpoints/demo/efficienttam_s.pt"
|
258 |
model_cfg = "efficienttam_s.yaml"
|
259 |
return [efficienttam_checkpoint, model_cfg]
|
260 |
+
|
261 |
+
@spaces.GPU
|
262 |
+
@torch.inference_mode()
|
263 |
+
@torch.autocast(device_type="cuda", dtype=torch.bfloat16)
|
264 |
def get_mask_sam_process(
|
265 |
stored_inference_state,
|
266 |
input_first_frame_image,
|
|
|
352 |
|
353 |
return gr.update(visible=True), "output_first_frame.jpg", frame_names, predictor, inference_state, gr.update(choices=available_frames_to_check, value=working_frame, visible=True)
|
354 |
|
355 |
+
@spaces.GPU
|
356 |
+
@torch.inference_mode()
|
357 |
+
@torch.autocast(device_type="cuda", dtype=torch.bfloat16)
|
358 |
def propagate_to_all(tracking_points, video_in, checkpoint, stored_inference_state, stored_frame_names, video_frames_dir, vis_frame_type, available_frames_to_check, working_frame):
|
359 |
if tracking_points is None or video_in is None or checkpoint is None or stored_inference_state is None:
|
360 |
return gr.update(value=None), gr.update(value=None), gr.update(value=None), available_frames_to_check, gr.update(visible=False)
|