File size: 8,693 Bytes
daf0288
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
from typing import Any, List, Literal, Mapping, Optional, Tuple
import time 

from PIL import Image
# Numpy image type
import numpy.typing as npt
from numpy import uint8
ImageType = npt.NDArray[uint8]

import numpy as np
import uuid

from doctrfiles import DoctrWordDetector,DoctrTextRecognizer,Wordboxes
from deepdoc import RagFlow
from utils import LineAnnotation,WordAnnotation,getlogger,cropImageExtraMargin,crop_an_Image,cropImages,get_new_coord
from numpy.typing import NDArray

MARGIN_FACTOR = 1.4
class OCRComponent1():
    """
    This component uses RagFlow as text line detector 
    Uses DocTR's word detector and text recognizer 
    """
    def __init__(self,englishflag =False):
        logger = getlogger("1")
        start_time = time.time()
        self.textlineDetector = RagFlow()
        end_time = time.time()
        execution_time = end_time - start_time
        logger.info(f"time to initialize Ragflow: {execution_time} seconds")


        start_time = time.time()
        """
        self.wordDetector = DoctrWordDetector(architecture="db_resnet50", 
                                              path_weights="doctrfiles/models/db_resnet50-79bd7d70.pt")
       
        """

        self.wordDetector = DoctrWordDetector(architecture="db_resnet50", 
                                              path_weights="doctrfiles/models/db_resnet50-79bd7d70.pt",
                                              path_config_json ="doctrfiles/models/db_resnet50_config.json")
      
       
        end_time = time.time()

        execution_time = end_time - start_time
        logger.info(f"time to initialize DoctrWordDetectorDebug: {execution_time} seconds")
        start_time = time.time()
        if not englishflag:
            self.textRecognizer = DoctrTextRecognizer(architecture="parseq", path_weights="doctrfiles/models/doctr-multilingual-parseq.bin", 
                                                path_config_json="doctrfiles/models/multilingual-parseq-config.json")
        else: 
            self.textRecognizer = DoctrTextRecognizer(architecture="master", path_weights="doctrfiles/models/master-fde31e4a.pt", 
                                                path_config_json="doctrfiles/models/master.json")
        end_time = time.time()
        execution_time = end_time - start_time
        logger.info(f"time to initialize DoctrTextRecognizer: {execution_time} seconds")

        
    @staticmethod
    def save_detection(detected_lines_images:List[ImageType], prefix = './res/test1/res_'):
        i = 0
        for img in detected_lines_images:
            pilimg = Image.fromarray(img)
            pilimg.save(prefix+str(i)+'.png')
            i=i+1

    @staticmethod
    def convert_coordinates(original_coord = NDArray[np.float32],detection_res = NDArray[np.float32])-> NDArray[np.float32]:
        """
        Type if original_coord : np.array([
                    [xmin, ymin],
                    [xmax, ymin],
                    [xmax, ymax],
                    [xmin, ymax]
                ]
        """
        height = original_coord[3][1] - original_coord[0][1]
        width = original_coord[1][0] - original_coord[0][0]
        if width/height<1.6:
            bigger = max(height,width)
            new_height = int(bigger *3)
            new_width = int(bigger*3)
        else:
            bigger = max(height,width)
            new_height = int(bigger *MARGIN_FACTOR)
            new_width = int(bigger*MARGIN_FACTOR)

        y_offset = (new_height - height) // 2
        x_offset = (new_width - width) // 2
        #new_img[y_offset:y_offset + height, x_offset:x_offset+width] = dst_img
        #x,y offsets are the min x and y 
        
        # Calculate relative coordinate to the original image in the padded image 

        rel = np.array(
            [
                [detection_res[0][0] - x_offset,  detection_res[0][1]-y_offset],
                [detection_res[1][0] - x_offset,  detection_res[1][1]-y_offset],
                [detection_res[2][0] - x_offset,  detection_res[2][1]-y_offset],
                [detection_res[3][0] - x_offset,  detection_res[3][1]-y_offset],
            ]
        )
        xmin = original_coord[0][0]
        ymin = original_coord[0][1]
        xmax = original_coord[1][0]
        ymax = original_coord[2][1]
        #This used to return 4 x 2 array
        #rel_in_page =[[xmin+b[0],ymin+b[1]] for b in rel]
        #Now returns 4x1 array 
        rel_in_page = np.array([xmin+rel[0][0],ymin+rel[0][1], xmin +rel[1][0], ymin +rel[2][1]])
        return rel_in_page

    

    def predict(self, img:ImageType)->Tuple[List[LineAnnotation],List[WordAnnotation]]:
        
        logger = getlogger("1")
        start_time = time.time()

        """
        bxs : Text line detection results - bounding boxes 
        Each element looks like : [array([[ 90.,  98.],
        [313., 100.],
        [312., 129.],
        [ 90., 127.]], dtype=float32)
        [left_lower, right_lower, right_upper, left_upper]
        """
        # 4x2 array 
        bxs:List[NDArray[np.float32]] = self.textlineDetector.predict(img = np.array(img)) 

        end_time = time.time()
        execution_time = end_time - start_time
        logger.info(f"time to detecttextline: {execution_time} seconds")

        line_annotations = {}
        straightboxs = []
        for points in bxs:
            xmin, ymin, xmax, ymax = get_new_coord(img.shape[1],img.shape[0],points)
            b = np.array([
                    [xmin, ymin],
                    [xmax, ymin],
                    [xmax, ymax],
                    [xmin, ymax]
                ], dtype=np.float32)
            straightboxs.append(b)
            ann = LineAnnotation(box =[xmin, ymin, xmax, ymax])
            line_annotations[ann.index] = ann 
        
        """
        detected_lines_images :  cropped images of detected lines
        """
        # Double computation in line 117 - we calculate the straight lines again 
        #Straightboxes : 4x 2 array 
        detected_lines_images:List[ImageType] = cropImageExtraMargin(straightboxs, img,margin =MARGIN_FACTOR,straight=True)
        #self.save_detection(detected_lines_images,prefix = './res/12June_two_Line_')
        start_time = time.time()
        word_annotations =[]

        #viz_word_detection =[]
        for uuid, lineimg in zip(line_annotations.keys(),detected_lines_images):
            
            original_coord = line_annotations[uuid].box
            xmin, ymin, xmax, ymax = original_coord
            original_coord_b = np.array([
                    [xmin, ymin],
                    [xmax, ymin],
                    [xmax, ymax],
                    [xmin, ymax]
                ], dtype=np.float32)

            #List of 4 x 2 
            detection_results :List[Wordboxes]= self.wordDetector.predict(lineimg)

            input_Word_recog ={}

            for wordbox in detection_results:
                #So i think cropped_image's expected form is different that what is being returned
                #takes in 4x2 array : box 
                cropped_image= crop_an_Image(wordbox.box,lineimg)
                """
                We need to convert coordintes in wordbox.box to the original image 
                wordbox.box = np.array(wordbox.box)
                """
                #original_coord_b :4x2 array
                #coord_in_page :4 x 1 array 
                coord_in_page = self.convert_coordinates(original_coord_b,wordbox.box)
                #logger.info("returned coordinate in page ")
                #logger.info(coord_in_page)


                wordAnn = WordAnnotation(box = coord_in_page, text = None)
                word_uuid = wordAnn.index
                input_Word_recog[word_uuid]= [cropped_image,wordAnn]
                #print("uuid is ")
                #print(uuid)
                #print(len(line_annotations[uuid].words))
                line_annotations[uuid].words.append(wordAnn)
                
                #viz_word_detection.append(cropped_image)
            

            #input_Word_recog contains only word detection 
            #It is dictionary of annotation id as key, than as values - list of cropped_image and Annotation Instance with key as uuid 

            word_annotations_in_line = self.textRecognizer.predict(input_Word_recog)
            word_annotations.append(word_annotations_in_line)
            
        #self.save_detection(viz_word_detection,prefix = './res/test4/rel_page_')
        end_time = time.time()
        execution_time = end_time - start_time
        logger.info(f"Entire DocTR pipeline: {execution_time} seconds")
        return line_annotations