Spaces:
Build error
Build error
File size: 15,870 Bytes
daf0288 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 |
import os
import traceback
import argparse
from typing import List, Tuple, Set, Dict
import time
from PIL import Image
import numpy as np
from doctr.models import ocr_predictor
import logging
import pandas as pd
from bs4 import BeautifulSoup
import gradio
from utils import cropImages
from utils import draw_only_box,draw_box_with_text,getlogger,Annotation
from ocr_component1 import OCRComponent1
from detectionAndOcrTable1 import DetectionAndOcrTable1
from detectionAndOcrTable2 import DetectionAndOcrTable2
from detectionAndOcrTable3 import DetectionAndOcrTable3
from detectionAndOcrTable4 import DetectionAndOcrTable4
from ocrTable1 import OcrTable1
from ocrTable2 import OcrTable2
from pdf2image import convert_from_path
def convertHTMLToCSV(html:str,output_path:str)->str:
# empty list
data = []
# for getting the header from
# the HTML file
list_header = []
soup = BeautifulSoup(html,'html.parser')
header = soup.find_all("table")[0].find("tr")
for items in header:
try:
list_header.append(items.get_text())
except:
continue
# for getting the data
HTML_data = soup.find_all("table")[0].find_all("tr")[1:]
for element in HTML_data:
sub_data = []
for sub_element in element:
try:
sub_data.append(sub_element.get_text())
except:
continue
data.append(sub_data)
# Storing the data into Pandas
# DataFrame
dataFrame = pd.DataFrame(data = data, columns = list_header)
# Converting Pandas DataFrame
# into CSV file
dataFrame.to_csv(output_path)
def saveResults(image_list, results, labels, output_dir='output/', threshold=0.5):
if not os.path.exists(output_dir):
os.makedirs(output_dir)
for idx, im in enumerate(image_list):
im = draw_only_box(im, results[idx], labels, threshold=threshold)
out_path = os.path.join(output_dir, f"{idx}.jpg")
im.save(out_path, quality=95)
print("save result to: " + out_path)
def InputToImages(input_path:str,resolution=300)-> List[Image.Image]:
"""
input is file location to image
return : List of Pillow image objects
"""
images=[]
try:
img =Image.open(input_path)
if img.mode == 'RGBA':
img = img.convert('RGB')
images.append(img)
except Exception as e:
traceback.print_exc()
return images
def drawTextDetRes(bxs :List[List[float]],img:Image.Image,output_path:str):
"""
draw layout analysis results
"""
"""bxs_draw is xmin, ymin, xmax, ymax"""
bxs_draw = [[b[0][0], b[0][1], b[1][0], b[-1][1]] for b in bxs if b[0][0] <= b[1][0] and b[0][1] <= b[-1][1]]
#images_to_recognizer = cropImage(bxs, img)
img_to_save = draw_only_box(img, bxs_draw)
img_to_save.save(output_path, quality=95)
def test_ocr_component1(test_file="TestingFiles/OCRTest1German.pdf", debug_folder = './res/table1/',englishFlag = False):
#Takes as input image of a single page and returns the detected lines and words
images = convert_from_path(test_file)
ocr = OCRComponent1(englishFlag)
ocr_results = {}
all_text_in_pages = {}
for page_number,img in enumerate(images):
text_in_page = ""
line_annotations= ocr.predict(img = np.array(img))
ocr_results[page_number] = line_annotations
"""
boxes_to_draw =[]
for list_of_ann in word_annotations:
for ann in list_of_ann:
logger.info(ann.text)
b = ann.box
boxes_to_draw.append(b)
img_to_save = draw_only_box(img,boxes_to_draw)
img_to_save.save("res/12June_2_lines.png", quality=95)
"""
line_boxes_to_draw =[]
#print("Detected lines are ")
#print(len(line_annotations.items()))
for index,ann in line_annotations.items():
b = ann.box
line_boxes_to_draw.append(b)
line_words = ""
#print("detected words per line")
#print(len(ann.words))
for wordann in ann.words:
line_words += wordann.text +" "
print(line_words)
text_in_page += line_words +"\n"
img_to_save1 = draw_only_box(img,line_boxes_to_draw)
imgname = test_file.split("/")[-1][:-4]
img_to_save1.save(debug_folder+imgname+"_"+str(page_number)+"_bbox_detection.png", quality=95)
all_text_in_pages[page_number] = text_in_page
return ocr_results, all_text_in_pages
def test_tableOcrOnly1(test_file :Image.Image , debug_folder = './res/table1/',denoise = False,englishFlag = False):
#Hybrid Unitable +DocTR
#Good at these kind of tables - with a lot of texts
table = OcrTable1(englishFlag)
image = test_file.convert("RGB")
"""
parts = test_file.split("/")
filename = parts[-1][:-4]
debugfolder_filename_page_name= debug_folder+filename+"_"
table_code = table.predict([image],debugfolder_filename_page_name,denoise = denoise)
with open(debugfolder_filename_page_name+'output.txt', 'w') as file:
file.write(table_code)
"""
table_code = table.predict([image],denoise = denoise)
return table_code
def test_tableOcrOnly2(test_file:Image.Image, debug_folder = './res/table2/'):
table = OcrTable2()
#FullUnitable
#Good at these kind of tables - with not much text
image = test_file.convert("RGB")
table.predict([image],debug_folder)
def test_table_component1(test_file = 'TestingFiles/TableOCRTestEnglish.pdf', debug_folder ='./res/table_debug2/',denoise = False,englishFlag = True):
table_predictor = DetectionAndOcrTable1(englishFlag)
images = convert_from_path(test_file)
for page_number,img in enumerate(images):
#print(img.mode)
print("Looking at page:")
print(page_number)
parts = test_file.split("/")
filename = parts[-1][:-4]
debugfolder_filename_page_name= debug_folder+filename+"_"+ str(page_number)+'_'
table_codes = table_predictor.predict(img,debugfolder_filename_page_name=debugfolder_filename_page_name,denoise = denoise)
for index, table_code in enumerate(table_codes):
with open(debugfolder_filename_page_name+str(index)+'output.xls', 'w') as file:
file.write(table_code)
return table_codes
def test_table_component2(test_file = 'TestingFiles/TableOCRTestEnglish.pdf', debug_folder ='./res/table_debug2/'):
#This components can take in entire pdf page as input , scan for tables and return the table in html format
#Uses the full unitable model
table_predictor = DetectionAndOcrTable2()
images = convert_from_path(test_file)
for page_number,img in enumerate(images):
print("Looking at page:")
print(page_number)
parts = test_file.split("/")
filename = parts[-1][:-4]
debugfolder_filename_page_name= debug_folder+filename+"_"+ str(page_number)+'_'
table_codes = table_predictor.predict(img,debugfolder_filename_page_name=debugfolder_filename_page_name)
for index, table_code in enumerate(table_codes):
with open(debugfolder_filename_page_name+str(index)+'output.xls', 'w') as file:
file.write(table_code)
return table_codes
def test_table_component3(test_file = 'TestingFiles/TableOCRTestEnglish.pdf',debug_folder ='./res/table_debug3/',denoise = False,englishFlag = True):
table_predictor = DetectionAndOcrTable3(englishFlag)
images = convert_from_path(test_file)
for page_number,img in enumerate(images):
#print(img.mode)
print("Looking at page:")
print(page_number)
parts = test_file.split("/")
filename = parts[-1][:-4]
debugfolder_filename_page_name= debug_folder+filename+"_"+ str(page_number)+'_'
table_codes = table_predictor.predict(img,debugfolder_filename_page_name=debugfolder_filename_page_name)
for index, table_code in enumerate(table_codes):
with open(debugfolder_filename_page_name+str(index)+'output.xls', 'w') as file:
file.write(table_code)
return table_codes
def test_table_component4(test_file = 'TestingFiles/TableOCRTestEnglish.pdf',debug_folder ='./res/table_debug3/'):
table_predictor = DetectionAndOcrTable4()
images = convert_from_path(test_file)
for page_number,img in enumerate(images):
#print(img.mode)
print("Looking at page:")
print(page_number)
parts = test_file.split("/")
filename = parts[-1][:-4]
debugfolder_filename_page_name= debug_folder+filename+"_"+ str(page_number)+'_'
table_codes = table_predictor.predict(img,debugfolder_filename_page_name=debugfolder_filename_page_name)
for index, table_code in enumerate(table_codes):
with open(debugfolder_filename_page_name+str(index)+'output.xls', 'w') as file:
file.write(table_code)
return table_codes
"""
parser = argparse.ArgumentParser(description='Process some strings.')
parser.add_argument('ocr', type=str, help='type in id of the component to test')
parser.add_argument('--test_file',type=str, help='path to the testing file')
parser.add_argument('--debug_folder',type=str, help='path to the folder you want to save your results in')
parser.add_argument('--englishFlag',type=bool, help='Whether your pdf is in english => could lead to better results ')
parser.add_argument('--denoise',type=bool, help='preprocessing for not clean scans ')
args = parser.parse_args()
start = time.time()
if args.ocr == "ocr1":
test_ocr_component1(args.test_file,args.debug_folder, args.englishFlag)
elif args.ocr == "table1":
test_tableOcrOnly1(args.test_file,args.debug_folder,args.englishFlag,args.denoise)
elif args.ocr == "table2":
test_tableOcrOnly2(args.test_file,args.debug_folder)
elif args.ocr =="pdftable1":
test_table_component1(args.test_file,args.debug_folder,args.englishFlag,args.denoise)
elif args.ocr =="pdftable2":
test_table_component2(args.test_file,args.debug_folder)
elif args.ocr =="pdftable3":
test_table_component3(args.test_file,args.debug_folder,args.englishFlag,args.denoise)
elif args.ocr =="pdftable4":
test_table_component4(args.test_file,args.debug_folder)
"""
import gradio as gr
from gradio_pdf import PDF
with gr.Blocks() as demo:
gr.Markdown("# OCR component")
inputs_for_ocr = [PDF(label="Document"), gr.Textbox(label="internal debug folder",placeholder = "./res/table1/"),gr.Checkbox(label ="English Document?",value =False)]
ocr_btn = gr.Button("Run ocr")
gr.Examples(
examples=[["TestingFiles/OCRTest1German.pdf",'./res/table1/',False]],
inputs=inputs_for_ocr
)
outputs_for_ocr = [gr.Textbox(label="List of annotation objects"), gr.Textbox("Text in page")]
ocr_btn.click(fn=test_ocr_component1,
inputs = inputs_for_ocr,
outputs = outputs_for_ocr,
api_name="OCR"
)
gr.Markdown("# Table OCR components that takes a pdf, extract table and return their html code ")
gr.Markdown("## Component 1 uses table transformer and doctr +Unitable")
inputs_for_pdftable1 = [PDF(label="Document"), gr.Textbox(label="internal debug folder",placeholder = "./res/table1/"),gr.Checkbox(label ="Denoise?",value =False),gr.Checkbox(label ="English Document?",value =False)]
table1_btn = gr.Button("Run pdftable1")
gr.Examples(
examples=[["TestingFiles/OCRTest5English.pdf",'./res/table1/',False]],
inputs=inputs_for_pdftable1
)
outputs_for_pdftable1 = [gr.Textbox(label="Table code")]
table1_btn.click(fn=test_table_component1,
inputs = inputs_for_pdftable1,
outputs = outputs_for_pdftable1,
api_name="pdfTable1"
)
gr.Markdown("## Component 2 uses table transformer and Unitable")
inputs_for_pdftable2 = [PDF(label="Document"), gr.Textbox(label="internal debug folder",placeholder = "./res/table1/")]
table2_btn = gr.Button("Run pdftable2")
gr.Examples(
examples=[["TestingFiles/OCRTest5English.pdf",'./res/table1/',False]],
inputs=inputs_for_pdftable1
)
outputs_for_pdftable2 = [gr.Textbox(label="Table code")]
table2_btn.click(fn=test_table_component2,
inputs = inputs_for_pdftable2,
outputs = outputs_for_pdftable2,
api_name="pdfTable2"
)
gr.Markdown("## Component 3 uses Yolo and Unitable+doctr")
inputs_for_pdftable3 = [PDF(label="Document"), gr.Textbox(label="internal debug folder",placeholder = "./res/table1/"),gr.Checkbox(label ="Denoise?",value =False),gr.Checkbox(label ="English Document?",value =False)]
table3_btn = gr.Button("Run pdftable3")
gr.Examples(
examples=[["TestingFiles/TableOCRTestEnglish.pdf",'./res/table1/',False]],
inputs=inputs_for_pdftable1
)
outputs_for_pdftable3 = [gr.Textbox(label="Table code")]
table3_btn.click(fn=test_table_component3,
inputs = inputs_for_pdftable3,
outputs = outputs_for_pdftable3,
api_name="pdfTable3"
)
gr.Markdown("## Component 4 uses Yolo and Unitable")
inputs_for_pdftable4 = [PDF(label="Document"), gr.Textbox(label="internal debug folder",placeholder = "./res/table1/")]
table4_btn = gr.Button("Run pdftable4")
gr.Examples(
examples=[["TestingFiles/TableOCRTestEasier.pdf",'./res/table1/',False]],
inputs=inputs_for_pdftable1
)
outputs_for_pdftable4 = [gr.Textbox(label="Table code")]
table4_btn.click(fn=test_table_component4,
inputs = inputs_for_pdftable4,
outputs = outputs_for_pdftable4,
api_name="pdfTable4"
)
gr.Markdown("# Table OCR component that takes image of an cropped tavle, extract table and return their html code ")
inputs_for_table1 = [gr.Image(label="Image of cropped table",type='pil'), gr.Textbox(label="internal debug folder",placeholder = "./res/table1/"),gr.Checkbox(label ="Denoise?",value =False),gr.Checkbox(label ="English Document?",value =False)]
onlytable1_btn = gr.Button("Run table1")
gr.Examples(
examples=[[Image.open("cropped_table.png"),'./res/table1/',False]],
inputs=inputs_for_table1
)
outputs_for_table1 = [gr.HTML(label="Table code")]
onlytable1_btn.click(fn=test_tableOcrOnly1,
inputs = inputs_for_table1,
outputs = outputs_for_table1,
api_name="table1"
)
gr.Markdown("## Another Table OCR component that takes image of an cropped table, extract table and return their html code ")
inputs_for_table2 = [gr.Image(label="Image of cropped table",type='pil'), gr.Textbox(label="internal debug folder",placeholder = "./res/table1/")]
onlytable2_btn = gr.Button("Run table2")
gr.Examples(
examples=[[Image.open("cropped_table.png"),'./res/table1/',False]],
inputs=inputs_for_table2
)
outputs_for_table2 = [gr.HTML(label="Table code")]
onlytable2_btn.click(fn=test_tableOcrOnly2,
inputs = inputs_for_table2,
outputs = outputs_for_table2,
api_name="table2"
)
demo.launch(share=True) |