File size: 23,469 Bytes
27ca8b3 cd8c42f ae8fd03 a7ea928 27ca8b3 0d5deae 27ca8b3 c7542a3 cef86dc c7542a3 ae8fd03 27ca8b3 0d5deae 27ca8b3 cd8c42f 27ca8b3 ae8fd03 f07d258 ae8fd03 e128dab ae8fd03 f373311 594fef7 750f1b3 594fef7 0d5deae e128dab ae8fd03 f373311 e128dab f373311 e128dab ae8fd03 3b61a0b c7542a3 0cb2a53 858a19b 0cb2a53 0d5deae 0cb2a53 0d5deae cef86dc ae8fd03 e5d4346 cef86dc a7ea928 ae8fd03 76b382c 35c3e32 c7542a3 cef86dc c7542a3 f373311 594fef7 f373311 c7542a3 ae8fd03 e128dab beb5f3e e128dab beb5f3e c7542a3 35c3e32 c7542a3 35c3e32 c7542a3 35c3e32 c7542a3 35c3e32 c7542a3 ae8fd03 c7542a3 d3d004a c7542a3 27ca8b3 44f0e84 ae8fd03 2ba875f fce0861 de66f2b fce0861 ae8fd03 de66f2b ae8fd03 cef86dc fce0861 cef86dc fce0861 ae8fd03 cef86dc c7542a3 cef86dc 3b61a0b c7542a3 3b61a0b ae8fd03 cef86dc ae8fd03 3b61a0b ae8fd03 cef86dc 3b61a0b c7542a3 3b61a0b c7542a3 3b61a0b c7542a3 3b61a0b ae8fd03 cef86dc 44f0e84 cef86dc ae8fd03 3b61a0b c7542a3 ae8fd03 3b61a0b ae8fd03 c7542a3 ae8fd03 cef86dc c7542a3 ae8fd03 3b61a0b ae8fd03 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 |
import gradio as gr
import time
import sys
import subprocess
import time
from pathlib import Path
import hydra
from omegaconf import DictConfig, OmegaConf
from omegaconf.omegaconf import open_dict
import numpy as np
import torch
import torchvision.transforms as transforms
import cv2
import subprocess
from PIL import Image
from datetime import datetime
import spaces
from algorithms.worldmem import WorldMemMinecraft
from huggingface_hub import hf_hub_download
import tempfile
torch.set_float32_matmul_precision("high")
ACTION_KEYS = [
"inventory",
"ESC",
"hotbar.1",
"hotbar.2",
"hotbar.3",
"hotbar.4",
"hotbar.5",
"hotbar.6",
"hotbar.7",
"hotbar.8",
"hotbar.9",
"forward",
"back",
"left",
"right",
"cameraY",
"cameraX",
"jump",
"sneak",
"sprint",
"swapHands",
"attack",
"use",
"pickItem",
"drop",
]
# Mapping of input keys to action names
KEY_TO_ACTION = {
"Q": ("forward", 1),
"E": ("back", 1),
"W": ("cameraY", -1),
"S": ("cameraY", 1),
"A": ("cameraX", -1),
"D": ("cameraX", 1),
"U": ("drop", 1),
"N": ("noop", 1),
"1": ("hotbar.1", 1),
}
example_images = [
["1", "assets/ice_plains.png", "turn rightgo backward→look up→turn left→look down→turn right→go forward→turn left", 20, 3, 8],
["2", "assets/place.png", "put item→go backward→put item→go backward→go around", 20, 3, 8],
["3", "assets/rain_sunflower_plains.png", "turn right→look up→turn right→look down→turn left→go backward→turn left", 20, 3, 8],
["4", "assets/desert.png", "turn 360 degree→turn right→go forward→turn left", 20, 3, 8],
]
def load_custom_checkpoint(algo, checkpoint_path):
hf_ckpt = str(checkpoint_path).split('/')
repo_id = '/'.join(hf_ckpt[:2])
file_name = '/'.join(hf_ckpt[2:])
model_path = hf_hub_download(repo_id=repo_id,
filename=file_name)
ckpt = torch.load(model_path, map_location=torch.device('cpu'))
algo.load_state_dict(ckpt['state_dict'], strict=False)
def parse_input_to_tensor(input_str):
"""
Convert an input string into a (sequence_length, 25) tensor, where each row is a one-hot representation
of the corresponding action key.
Args:
input_str (str): A string consisting of "WASD" characters (e.g., "WASDWS").
Returns:
torch.Tensor: A tensor of shape (sequence_length, 25), where each row is a one-hot encoded action.
"""
# Get the length of the input sequence
seq_len = len(input_str)
# Initialize a zero tensor of shape (seq_len, 25)
action_tensor = torch.zeros((seq_len, 25))
# Iterate through the input string and update the corresponding positions
for i, char in enumerate(input_str):
action, value = KEY_TO_ACTION.get(char.upper()) # Convert to uppercase to handle case insensitivity
if action and action in ACTION_KEYS:
index = ACTION_KEYS.index(action)
action_tensor[i, index] = value # Set the corresponding action index to 1
return action_tensor
def load_image_as_tensor(image_path: str) -> torch.Tensor:
"""
Load an image and convert it to a 0-1 normalized tensor.
Args:
image_path (str): Path to the image file.
Returns:
torch.Tensor: Image tensor of shape (C, H, W), normalized to [0,1].
"""
if isinstance(image_path, str):
image = Image.open(image_path).convert("RGB") # Ensure it's RGB
else:
image = image_path
transform = transforms.Compose([
transforms.ToTensor(), # Converts to tensor and normalizes to [0,1]
])
return transform(image)
def enable_amp(model, precision="16-mixed"):
original_forward = model.forward
def amp_forward(*args, **kwargs):
with torch.autocast("cuda", dtype=torch.float16 if precision == "16-mixed" else torch.bfloat16):
return original_forward(*args, **kwargs)
model.forward = amp_forward
return model
memory_frames = []
input_history = ""
ICE_PLAINS_IMAGE = "assets/ice_plains.png"
DESERT_IMAGE = "assets/desert.png"
SAVANNA_IMAGE = "assets/savanna.png"
PLAINS_IMAGE = "assets/plans.png"
PLACE_IMAGE = "assets/place.png"
SUNFLOWERS_IMAGE = "assets/sunflower_plains.png"
SUNFLOWERS_RAIN_IMAGE = "assets/rain_sunflower_plains.png"
device = torch.device('cuda')
def save_video(frames, path="output.mp4", fps=10):
h, w, _ = frames[0].shape
out = cv2.VideoWriter(path, cv2.VideoWriter_fourcc(*'XVID'), fps, (w, h))
for frame in frames:
out.write(cv2.cvtColor(frame, cv2.COLOR_RGB2BGR))
out.release()
ffmpeg_cmd = [
"ffmpeg", "-y", "-i", path, "-c:v", "libx264", "-crf", "23", "-preset", "medium", path
]
subprocess.run(ffmpeg_cmd, stdout=subprocess.DEVNULL, stderr=subprocess.DEVNULL)
return path
cfg = OmegaConf.load("configurations/huggingface.yaml")
worldmem = WorldMemMinecraft(cfg)
load_custom_checkpoint(algo=worldmem.diffusion_model, checkpoint_path=cfg.diffusion_path)
load_custom_checkpoint(algo=worldmem.vae, checkpoint_path=cfg.vae_path)
load_custom_checkpoint(algo=worldmem.pose_prediction_model, checkpoint_path=cfg.pose_predictor_path)
worldmem.to("cuda").eval()
# worldmem = enable_amp(worldmem, precision="16-mixed")
actions = np.zeros((1, 25), dtype=np.float32)
poses = np.zeros((1, 5), dtype=np.float32)
def get_duration_single_image_to_long_video(first_frame, action, first_pose, device, self_frames, self_actions,
self_poses, self_memory_c2w, self_frame_idx):
return 5 * len(action) if self_actions is not None else 5
@spaces.GPU(duration=get_duration_single_image_to_long_video)
def run_interactive(first_frame, action, first_pose, device, self_frames, self_actions,
self_poses, self_memory_c2w, self_frame_idx):
new_frame, self_frames, self_actions, self_poses, self_memory_c2w, self_frame_idx = worldmem.interactive(first_frame,
action,
first_pose,
device=device,
self_frames=self_frames,
self_actions=self_actions,
self_poses=self_poses,
self_memory_c2w=self_memory_c2w,
self_frame_idx=self_frame_idx)
return new_frame, self_frames, self_actions, self_poses, self_memory_c2w, self_frame_idx
def set_denoising_steps(denoising_steps, sampling_timesteps_state):
worldmem.sampling_timesteps = denoising_steps
worldmem.diffusion_model.sampling_timesteps = denoising_steps
sampling_timesteps_state = denoising_steps
print("set denoising steps to", worldmem.sampling_timesteps)
return sampling_timesteps_state
def set_context_length(context_length, sampling_context_length_state):
worldmem.n_tokens = context_length
sampling_context_length_state = context_length
print("set context length to", worldmem.n_tokens)
return sampling_context_length_state
def set_memory_length(memory_length, sampling_memory_length_state):
worldmem.condition_similar_length = memory_length
sampling_memory_length_state = memory_length
print("set memory length to", worldmem.condition_similar_length)
return sampling_memory_length_state
def generate(keys, input_history, memory_frames, self_frames, self_actions, self_poses, self_memory_c2w, self_frame_idx):
input_actions = parse_input_to_tensor(keys)
if self_frames is None:
new_frame, self_frames, self_actions, self_poses, self_memory_c2w, self_frame_idx = run_interactive(memory_frames[0],
actions[0],
poses[0],
device=device,
self_frames=self_frames,
self_actions=self_actions,
self_poses=self_poses,
self_memory_c2w=self_memory_c2w,
self_frame_idx=self_frame_idx)
new_frame, self_frames, self_actions, self_poses, self_memory_c2w, self_frame_idx = run_interactive(memory_frames[0],
input_actions,
None,
device=device,
self_frames=self_frames,
self_actions=self_actions,
self_poses=self_poses,
self_memory_c2w=self_memory_c2w,
self_frame_idx=self_frame_idx)
memory_frames = np.concatenate([memory_frames, new_frame[:,0]])
out_video = memory_frames.transpose(0,2,3,1).copy()
out_video = np.clip(out_video, a_min=0.0, a_max=1.0)
out_video = (out_video * 255).astype(np.uint8)
last_frame = out_video[-1].copy()
border_thickness = 2
out_video[-len(new_frame):, :border_thickness, :, :] = [255, 0, 0]
out_video[-len(new_frame):, -border_thickness:, :, :] = [255, 0, 0]
out_video[-len(new_frame):, :, :border_thickness, :] = [255, 0, 0]
out_video[-len(new_frame):, :, -border_thickness:, :] = [255, 0, 0]
temporal_video_path = tempfile.NamedTemporaryFile(suffix='.mp4').name
save_video(out_video, temporal_video_path)
input_history += keys
# now = datetime.now()
# folder_name = now.strftime("%Y-%m-%d_%H-%M-%S")
# folder_path = os.path.join("/mnt/xiaozeqi/worldmem/output_material", folder_name)
# os.makedirs(folder_path, exist_ok=True)
# data_dict = {
# "input_history": input_history,
# "memory_frames": memory_frames,
# "self_frames": self_frames,
# "self_actions": self_actions,
# "self_poses": self_poses,
# "self_memory_c2w": self_memory_c2w,
# "self_frame_idx": self_frame_idx,
# }
# np.savez(os.path.join(folder_path, "data_bundle.npz"), **data_dict)
return last_frame, temporal_video_path, input_history, memory_frames, self_frames, self_actions, self_poses, self_memory_c2w, self_frame_idx
def reset(selected_image):
self_frames = None
self_poses = None
self_actions = None
self_memory_c2w = None
self_frame_idx = None
memory_frames = load_image_as_tensor(selected_image).numpy()[None]
input_history = ""
new_frame, self_frames, self_actions, self_poses, self_memory_c2w, self_frame_idx = run_interactive(memory_frames[0],
actions[0],
poses[0],
device=device,
self_frames=self_frames,
self_actions=self_actions,
self_poses=self_poses,
self_memory_c2w=self_memory_c2w,
self_frame_idx=self_frame_idx)
return input_history, memory_frames, self_frames, self_actions, self_poses, self_memory_c2w, self_frame_idx
def on_image_click(selected_image):
input_history, memory_frames, self_frames, self_actions, self_poses, self_memory_c2w, self_frame_idx = reset(selected_image)
return input_history, selected_image, selected_image, memory_frames, self_frames, self_actions, self_poses, self_memory_c2w, self_frame_idx
def set_memory(examples_case, image_display, log_output, slider_denoising_step, slider_context_length, slider_memory_length):
if examples_case == '1':
data_bundle = np.load("assets/examples/case1.npz")
input_history = data_bundle['input_history'].item()
memory_frames = data_bundle['memory_frames']
self_frames = data_bundle['self_frames']
self_actions = data_bundle['self_actions']
self_poses = data_bundle['self_poses']
self_memory_c2w = data_bundle['self_memory_c2w']
self_frame_idx = data_bundle['self_frame_idx']
elif examples_case == '2':
data_bundle = np.load("assets/examples/case2.npz")
input_history = data_bundle['input_history'].item()
memory_frames = data_bundle['memory_frames']
self_frames = data_bundle['self_frames']
self_actions = data_bundle['self_actions']
self_poses = data_bundle['self_poses']
self_memory_c2w = data_bundle['self_memory_c2w']
self_frame_idx = data_bundle['self_frame_idx']
elif examples_case == '3':
data_bundle = np.load("assets/examples/case3.npz")
input_history = data_bundle['input_history'].item()
memory_frames = data_bundle['memory_frames']
self_frames = data_bundle['self_frames']
self_actions = data_bundle['self_actions']
self_poses = data_bundle['self_poses']
self_memory_c2w = data_bundle['self_memory_c2w']
self_frame_idx = data_bundle['self_frame_idx']
elif examples_case == '4':
data_bundle = np.load("assets/examples/case4.npz")
input_history = data_bundle['input_history'].item()
memory_frames = data_bundle['memory_frames']
self_frames = data_bundle['self_frames']
self_actions = data_bundle['self_actions']
self_poses = data_bundle['self_poses']
self_memory_c2w = data_bundle['self_memory_c2w']
self_frame_idx = data_bundle['self_frame_idx']
out_video = memory_frames.transpose(0,2,3,1)
out_video = np.clip(out_video, a_min=0.0, a_max=1.0)
out_video = (out_video * 255).astype(np.uint8)
temporal_video_path = tempfile.NamedTemporaryFile(suffix='.mp4').name
save_video(out_video, temporal_video_path)
return input_history, out_video[-1], temporal_video_path, memory_frames, self_frames, self_actions, self_poses, self_memory_c2w, self_frame_idx
css = """
h1 {
text-align: center;
display:block;
}
"""
with gr.Blocks(css=css) as demo:
gr.Markdown(
"""
# WORLDMEM: Long-term Consistent World Simulation with Memory
<div style="text-align: center;">
<a style="display:inline-block; margin: 0 10px;" href="https://github.com/xizaoqu/WorldMem">
<img src="https://img.shields.io/badge/GitHub-Repository-black?logo=github"/>
</a>
<a style="display:inline-block; margin: 0 10px;" href="https://xizaoqu.github.io/worldmem/">
<img src="https://img.shields.io/badge/Project_Page-blue"/>
</a>
<a style="display:inline-block; margin: 0 10px;" href="https://arxiv.org/abs/2504.12369">
<img src="https://img.shields.io/badge/arXiv-Paper-red"/>
</a>
</div>
"""
)
gr.Markdown(
"""
## 🚀 How to Explore WorldMem
Follow these simple steps to get started:
1. **Choose a scene**.
2. **Input your action sequence**.
3. **Click "Generate"**.
- You can continuously click **"Generate"** to **extend the video** and observe how well the world maintains consistency over time.
- For best performance, we recommend **running locally** (1s/frame on H100) instead of Spaces (5s/frame).
- ⭐️ If you like this project, please [give it a star on GitHub](https://github.com/xizaoqu/WorldMem)!
- 💬 For questions or feedback, feel free to open an issue or email me at **zeqixiao1@gmail.com**.
Happy exploring! 🌍
"""
)
example_actions = {"turn left→turn right": "AAAAAAAAAAAADDDDDDDDDDDD",
"turn 360 degree": "AAAAAAAAAAAAAAAAAAAAAAAA",
"turn right→go backward→look up→turn left→look down": "DDDDDDDDEEEEEEEEEESSSAAAAAAAAWWW",
"turn right→go forward→turn right": "DDDDDDDDDDDDQQQQQQQQQQQQQQQDDDDDDDDDDDD",
"turn right→look up→turn right→look down": "DDDDWWWDDDDDDDDDDDDDDDDDDDDSSS",
"put item→go backward→put item→go backward":"SSUNNWWEEEEEEEEEAAASSUNNWWEEEEEEEEE"}
selected_image = gr.State(ICE_PLAINS_IMAGE)
with gr.Row(variant="panel"):
with gr.Column():
gr.Markdown("🖼️ Start from this frame.")
image_display = gr.Image(value=selected_image.value, interactive=False, label="Current Frame")
with gr.Column():
gr.Markdown("🎞️ Generated videos. New contents are marked in red box.")
video_display = gr.Video(autoplay=True, loop=True)
gr.Markdown("### 🏞️ Choose a scene and start generation.")
with gr.Row():
image_display_1 = gr.Image(value=SUNFLOWERS_IMAGE, interactive=False, label="Sunflower Plains")
image_display_2 = gr.Image(value=DESERT_IMAGE, interactive=False, label="Desert")
image_display_3 = gr.Image(value=SAVANNA_IMAGE, interactive=False, label="Savanna")
image_display_4 = gr.Image(value=ICE_PLAINS_IMAGE, interactive=False, label="Ice Plains")
image_display_5 = gr.Image(value=SUNFLOWERS_RAIN_IMAGE, interactive=False, label="Rainy Sunflower Plains")
image_display_6 = gr.Image(value=PLACE_IMAGE, interactive=False, label="Place")
with gr.Row(variant="panel"):
with gr.Column(scale=2):
gr.Markdown("### 🕹️ Input action sequences for interaction.")
input_box = gr.Textbox(label="Action Sequences", placeholder="Enter action sequences here, e.g. (AAAAAAAAAAAADDDDDDDDDDDD)", lines=1, max_lines=1)
log_output = gr.Textbox(label="History Sequences", interactive=False)
gr.Markdown(
"""
### 💡 Action Key Guide
<pre style="font-family: monospace; font-size: 14px; line-height: 1.6;">
W: Turn up S: Turn down A: Turn left D: Turn right
Q: Go forward E: Go backward N: No-op U: Use item
</pre>
"""
)
gr.Markdown("### 👇 Click to quickly set action sequence examples.")
with gr.Row():
buttons = []
for action_key in list(example_actions.keys())[:2]:
with gr.Column(scale=len(action_key)):
buttons.append(gr.Button(action_key))
with gr.Row():
for action_key in list(example_actions.keys())[2:4]:
with gr.Column(scale=len(action_key)):
buttons.append(gr.Button(action_key))
with gr.Row():
for action_key in list(example_actions.keys())[4:6]:
with gr.Column(scale=len(action_key)):
buttons.append(gr.Button(action_key))
with gr.Column(scale=1):
submit_button = gr.Button("🎬 Generate!", variant="primary")
reset_btn = gr.Button("🔄 Reset")
gr.Markdown("### ⚙️ Advanced Settings")
slider_denoising_step = gr.Slider(
minimum=10, maximum=50, value=worldmem.sampling_timesteps, step=1,
label="Denoising Steps",
info="Higher values yield better quality but slower speed"
)
slider_context_length = gr.Slider(
minimum=2, maximum=10, value=worldmem.n_tokens, step=1,
label="Context Length",
info="How many previous frames in temporal context window."
)
slider_memory_length = gr.Slider(
minimum=4, maximum=16, value=worldmem.condition_similar_length, step=1,
label="Memory Length",
info="How many previous frames in memory window."
)
sampling_timesteps_state = gr.State(worldmem.sampling_timesteps)
sampling_context_length_state = gr.State(worldmem.n_tokens)
sampling_memory_length_state = gr.State(worldmem.condition_similar_length)
memory_frames = gr.State(load_image_as_tensor(selected_image.value)[None].numpy())
self_frames = gr.State()
self_actions = gr.State()
self_poses = gr.State()
self_memory_c2w = gr.State()
self_frame_idx = gr.State()
def set_action(action):
return action
for button, action_key in zip(buttons, list(example_actions.keys())):
button.click(set_action, inputs=[gr.State(value=example_actions[action_key])], outputs=input_box)
gr.Markdown("### 👇 Click to review generated examples, and continue generation based on them.")
example_case = gr.Textbox(label="Case", visible=False)
image_output = gr.Image(visible=False)
examples = gr.Examples(
examples=example_images,
inputs=[example_case, image_output, log_output, slider_denoising_step, slider_context_length, slider_memory_length],
cache_examples=False
)
example_case.change(
fn=set_memory,
inputs=[example_case, image_output, log_output, slider_denoising_step, slider_context_length, slider_memory_length],
outputs=[log_output, image_display, video_display, memory_frames, self_frames, self_actions, self_poses, self_memory_c2w, self_frame_idx]
)
submit_button.click(generate, inputs=[input_box, log_output, memory_frames, self_frames, self_actions, self_poses, self_memory_c2w, self_frame_idx], outputs=[image_display, video_display, log_output, memory_frames, self_frames, self_actions, self_poses, self_memory_c2w, self_frame_idx])
reset_btn.click(reset, inputs=[selected_image], outputs=[log_output, memory_frames, self_frames, self_actions, self_poses, self_memory_c2w, self_frame_idx])
image_display_1.select(lambda: on_image_click(SUNFLOWERS_IMAGE), outputs=[log_output, selected_image, image_display, memory_frames, self_frames, self_actions, self_poses, self_memory_c2w, self_frame_idx])
image_display_2.select(lambda: on_image_click(DESERT_IMAGE), outputs=[log_output, selected_image, image_display, memory_frames, self_frames, self_actions, self_poses, self_memory_c2w, self_frame_idx])
image_display_3.select(lambda: on_image_click(SAVANNA_IMAGE), outputs=[log_output, selected_image, image_display, memory_frames, self_frames, self_actions, self_poses, self_memory_c2w, self_frame_idx])
image_display_4.select(lambda: on_image_click(ICE_PLAINS_IMAGE), outputs=[log_output, selected_image, image_display, memory_frames, self_frames, self_actions, self_poses, self_memory_c2w, self_frame_idx])
image_display_5.select(lambda: on_image_click(SUNFLOWERS_RAIN_IMAGE), outputs=[log_output, selected_image, image_display, memory_frames, self_frames, self_actions, self_poses, self_memory_c2w, self_frame_idx])
image_display_6.select(lambda: on_image_click(PLACE_IMAGE), outputs=[log_output, selected_image,image_display, memory_frames, self_frames, self_actions, self_poses, self_memory_c2w, self_frame_idx])
slider_denoising_step.change(fn=set_denoising_steps, inputs=[slider_denoising_step, sampling_timesteps_state], outputs=sampling_timesteps_state)
slider_context_length.change(fn=set_context_length, inputs=[slider_context_length, sampling_context_length_state], outputs=sampling_context_length_state)
slider_memory_length.change(fn=set_memory_length, inputs=[slider_memory_length, sampling_memory_length_state], outputs=sampling_memory_length_state)
demo.launch()
|