Spaces:
Running
on
Zero
Running
on
Zero
File size: 16,338 Bytes
38e3f9b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 |
# MIT License
# Copyright (c) 2022 Intelligent Systems Lab Org
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
# File author: Shariq Farooq Bhat
import json
import os
from zoedepth.utils.easydict import EasyDict as edict
from zoedepth.utils.arg_utils import infer_type
import pathlib
import platform
ROOT = pathlib.Path(__file__).parent.parent.resolve()
HOME_DIR = os.path.expanduser("~")
COMMON_CONFIG = {
"save_dir": os.path.expanduser("~/shortcuts/monodepth3_checkpoints"),
"project": "ZoeDepth",
"tags": '',
"notes": "",
"gpu": None,
"root": ".",
"uid": None,
"print_losses": False
}
DATASETS_CONFIG = {
"kitti": {
"dataset": "kitti",
"min_depth": 0.001,
"max_depth": 80,
"data_path": os.path.join(HOME_DIR, "shortcuts/datasets/kitti/raw"),
"gt_path": os.path.join(HOME_DIR, "shortcuts/datasets/kitti/gts"),
"filenames_file": "./train_test_inputs/kitti_eigen_train_files_with_gt.txt",
"input_height": 352,
"input_width": 1216, # 704
"data_path_eval": os.path.join(HOME_DIR, "shortcuts/datasets/kitti/raw"),
"gt_path_eval": os.path.join(HOME_DIR, "shortcuts/datasets/kitti/gts"),
"filenames_file_eval": "./train_test_inputs/kitti_eigen_test_files_with_gt.txt",
"min_depth_eval": 1e-3,
"max_depth_eval": 80,
"do_random_rotate": True,
"degree": 1.0,
"do_kb_crop": True,
"garg_crop": True,
"eigen_crop": False,
"use_right": False
},
"kitti_test": {
"dataset": "kitti",
"min_depth": 0.001,
"max_depth": 80,
"data_path": os.path.join(HOME_DIR, "shortcuts/datasets/kitti/raw"),
"gt_path": os.path.join(HOME_DIR, "shortcuts/datasets/kitti/gts"),
"filenames_file": "./train_test_inputs/kitti_eigen_train_files_with_gt.txt",
"input_height": 352,
"input_width": 1216,
"data_path_eval": os.path.join(HOME_DIR, "shortcuts/datasets/kitti/raw"),
"gt_path_eval": os.path.join(HOME_DIR, "shortcuts/datasets/kitti/gts"),
"filenames_file_eval": "./train_test_inputs/kitti_eigen_test_files_with_gt.txt",
"min_depth_eval": 1e-3,
"max_depth_eval": 80,
"do_random_rotate": False,
"degree": 1.0,
"do_kb_crop": True,
"garg_crop": True,
"eigen_crop": False,
"use_right": False
},
"nyu": {
"dataset": "nyu",
"avoid_boundary": False,
"min_depth": 1e-3, # originally 0.1
"max_depth": 10,
"data_path": os.path.join(HOME_DIR, "shortcuts/datasets/nyu_depth_v2/sync/"),
"gt_path": os.path.join(HOME_DIR, "shortcuts/datasets/nyu_depth_v2/sync/"),
"filenames_file": "./train_test_inputs/nyudepthv2_train_files_with_gt.txt",
"input_height": 480,
"input_width": 640,
"data_path_eval": os.path.join(HOME_DIR, "shortcuts/datasets/nyu_depth_v2/official_splits/test/"),
"gt_path_eval": os.path.join(HOME_DIR, "shortcuts/datasets/nyu_depth_v2/official_splits/test/"),
"filenames_file_eval": "./train_test_inputs/nyudepthv2_test_files_with_gt.txt",
"min_depth_eval": 1e-3,
"max_depth_eval": 10,
"min_depth_diff": -10,
"max_depth_diff": 10,
"do_random_rotate": True,
"degree": 1.0,
"do_kb_crop": False,
"garg_crop": False,
"eigen_crop": True
},
"ibims": {
"dataset": "ibims",
"ibims_root": os.path.join(HOME_DIR, "shortcuts/datasets/ibims/ibims1_core_raw/"),
"eigen_crop": True,
"garg_crop": False,
"do_kb_crop": False,
"min_depth_eval": 0,
"max_depth_eval": 10,
"min_depth": 1e-3,
"max_depth": 10
},
"sunrgbd": {
"dataset": "sunrgbd",
"sunrgbd_root": os.path.join(HOME_DIR, "shortcuts/datasets/SUNRGBD/test/"),
"eigen_crop": True,
"garg_crop": False,
"do_kb_crop": False,
"min_depth_eval": 0,
"max_depth_eval": 8,
"min_depth": 1e-3,
"max_depth": 10
},
"diml_indoor": {
"dataset": "diml_indoor",
"diml_indoor_root": os.path.join(HOME_DIR, "shortcuts/datasets/diml_indoor_test/"),
"eigen_crop": True,
"garg_crop": False,
"do_kb_crop": False,
"min_depth_eval": 0,
"max_depth_eval": 10,
"min_depth": 1e-3,
"max_depth": 10
},
"diml_outdoor": {
"dataset": "diml_outdoor",
"diml_outdoor_root": os.path.join(HOME_DIR, "shortcuts/datasets/diml_outdoor_test/"),
"eigen_crop": False,
"garg_crop": True,
"do_kb_crop": False,
"min_depth_eval": 2,
"max_depth_eval": 80,
"min_depth": 1e-3,
"max_depth": 80
},
"diode_indoor": {
"dataset": "diode_indoor",
"diode_indoor_root": os.path.join(HOME_DIR, "shortcuts/datasets/diode_indoor/"),
"eigen_crop": True,
"garg_crop": False,
"do_kb_crop": False,
"min_depth_eval": 1e-3,
"max_depth_eval": 10,
"min_depth": 1e-3,
"max_depth": 10
},
"diode_outdoor": {
"dataset": "diode_outdoor",
"diode_outdoor_root": os.path.join(HOME_DIR, "shortcuts/datasets/diode_outdoor/"),
"eigen_crop": False,
"garg_crop": True,
"do_kb_crop": False,
"min_depth_eval": 1e-3,
"max_depth_eval": 80,
"min_depth": 1e-3,
"max_depth": 80
},
"hypersim_test": {
"dataset": "hypersim_test",
"hypersim_test_root": os.path.join(HOME_DIR, "shortcuts/datasets/hypersim_test/"),
"eigen_crop": True,
"garg_crop": False,
"do_kb_crop": False,
"min_depth_eval": 1e-3,
"max_depth_eval": 80,
"min_depth": 1e-3,
"max_depth": 10
},
"vkitti": {
"dataset": "vkitti",
"vkitti_root": os.path.join(HOME_DIR, "shortcuts/datasets/vkitti_test/"),
"eigen_crop": False,
"garg_crop": True,
"do_kb_crop": True,
"min_depth_eval": 1e-3,
"max_depth_eval": 80,
"min_depth": 1e-3,
"max_depth": 80
},
"vkitti2": {
"dataset": "vkitti2",
"vkitti2_root": os.path.join(HOME_DIR, "shortcuts/datasets/vkitti2/"),
"eigen_crop": False,
"garg_crop": True,
"do_kb_crop": True,
"min_depth_eval": 1e-3,
"max_depth_eval": 80,
"min_depth": 1e-3,
"max_depth": 80,
},
"ddad": {
"dataset": "ddad",
"ddad_root": os.path.join(HOME_DIR, "shortcuts/datasets/ddad/ddad_val/"),
"eigen_crop": False,
"garg_crop": True,
"do_kb_crop": True,
"min_depth_eval": 1e-3,
"max_depth_eval": 80,
"min_depth": 1e-3,
"max_depth": 80,
},
}
ALL_INDOOR = ["nyu", "ibims", "sunrgbd", "diode_indoor", "hypersim_test"]
ALL_OUTDOOR = ["kitti", "diml_outdoor", "diode_outdoor", "vkitti2", "ddad"]
ALL_EVAL_DATASETS = ALL_INDOOR + ALL_OUTDOOR
COMMON_TRAINING_CONFIG = {
"dataset": "nyu",
"distributed": True,
"workers": 16,
"clip_grad": 0.1,
"use_shared_dict": False,
"shared_dict": None,
"use_amp": False,
"aug": True,
"random_crop": False,
"random_translate": False,
"translate_prob": 0.2,
"max_translation": 100,
"validate_every": 0.25,
"log_images_every": 0.1,
"prefetch": False,
}
def flatten(config, except_keys=('bin_conf')):
def recurse(inp):
if isinstance(inp, dict):
for key, value in inp.items():
if key in except_keys:
yield (key, value)
if isinstance(value, dict):
yield from recurse(value)
else:
yield (key, value)
return dict(list(recurse(config)))
def split_combined_args(kwargs):
"""Splits the arguments that are combined with '__' into multiple arguments.
Combined arguments should have equal number of keys and values.
Keys are separated by '__' and Values are separated with ';'.
For example, '__n_bins__lr=256;0.001'
Args:
kwargs (dict): key-value pairs of arguments where key-value is optionally combined according to the above format.
Returns:
dict: Parsed dict with the combined arguments split into individual key-value pairs.
"""
new_kwargs = dict(kwargs)
for key, value in kwargs.items():
if key.startswith("__"):
keys = key.split("__")[1:]
values = value.split(";")
assert len(keys) == len(
values), f"Combined arguments should have equal number of keys and values. Keys are separated by '__' and Values are separated with ';'. For example, '__n_bins__lr=256;0.001. Given (keys,values) is ({keys}, {values})"
for k, v in zip(keys, values):
new_kwargs[k] = v
return new_kwargs
def parse_list(config, key, dtype=int):
"""Parse a list of values for the key if the value is a string. The values are separated by a comma.
Modifies the config in place.
"""
if key in config:
if isinstance(config[key], str):
config[key] = list(map(dtype, config[key].split(',')))
assert isinstance(config[key], list) and all([isinstance(e, dtype) for e in config[key]]
), f"{key} should be a list of values dtype {dtype}. Given {config[key]} of type {type(config[key])} with values of type {[type(e) for e in config[key]]}."
def get_model_config(model_name, model_version=None):
"""Find and parse the .json config file for the model.
Args:
model_name (str): name of the model. The config file should be named config_{model_name}[_{model_version}].json under the models/{model_name} directory.
model_version (str, optional): Specific config version. If specified config_{model_name}_{model_version}.json is searched for and used. Otherwise config_{model_name}.json is used. Defaults to None.
Returns:
easydict: the config dictionary for the model.
"""
config_fname = f"config_{model_name}_{model_version}.json" if model_version is not None else f"config_{model_name}.json"
config_file = os.path.join(ROOT, "models", model_name, config_fname)
if not os.path.exists(config_file):
return None
with open(config_file, "r") as f:
config = edict(json.load(f))
# handle dictionary inheritance
# only training config is supported for inheritance
if "inherit" in config.train and config.train.inherit is not None:
inherit_config = get_model_config(config.train["inherit"]).train
for key, value in inherit_config.items():
if key not in config.train:
config.train[key] = value
return edict(config)
def update_model_config(config, mode, model_name, model_version=None, strict=False):
model_config = get_model_config(model_name, model_version)
if model_config is not None:
config = {**config, **
flatten({**model_config.model, **model_config[mode]})}
elif strict:
raise ValueError(f"Config file for model {model_name} not found.")
return config
def check_choices(name, value, choices):
# return # No checks in dev branch
if value not in choices:
raise ValueError(f"{name} {value} not in supported choices {choices}")
KEYS_TYPE_BOOL = ["use_amp", "distributed", "use_shared_dict", "same_lr", "aug", "three_phase",
"prefetch", "cycle_momentum"] # Casting is not necessary as their int casted values in config are 0 or 1
def get_config(model_name, mode='train', dataset=None, **overwrite_kwargs):
"""Main entry point to get the config for the model.
Args:
model_name (str): name of the desired model.
mode (str, optional): "train" or "infer". Defaults to 'train'.
dataset (str, optional): If specified, the corresponding dataset configuration is loaded as well. Defaults to None.
Keyword Args: key-value pairs of arguments to overwrite the default config.
The order of precedence for overwriting the config is (Higher precedence first):
# 1. overwrite_kwargs
# 2. "config_version": Config file version if specified in overwrite_kwargs. The corresponding config loaded is config_{model_name}_{config_version}.json
# 3. "version_name": Default Model version specific config specified in overwrite_kwargs. The corresponding config loaded is config_{model_name}_{version_name}.json
# 4. common_config: Default config for all models specified in COMMON_CONFIG
Returns:
easydict: The config dictionary for the model.
"""
check_choices("Model", model_name, ["zoedepth", "zoedepth_nk"])
check_choices("Mode", mode, ["train", "infer", "eval"])
if mode == "train":
check_choices("Dataset", dataset, ["nyu", "kitti", "mix", None])
config = flatten({**COMMON_CONFIG, **COMMON_TRAINING_CONFIG})
config = update_model_config(config, mode, model_name)
# update with model version specific config
version_name = overwrite_kwargs.get("version_name", config["version_name"])
config = update_model_config(config, mode, model_name, version_name)
# update with config version if specified
config_version = overwrite_kwargs.get("config_version", None)
if config_version is not None:
print("Overwriting config with config_version", config_version)
config = update_model_config(config, mode, model_name, config_version)
# update with overwrite_kwargs
# Combined args are useful for hyperparameter search
overwrite_kwargs = split_combined_args(overwrite_kwargs)
config = {**config, **overwrite_kwargs}
# Casting to bool # TODO: Not necessary. Remove and test
for key in KEYS_TYPE_BOOL:
if key in config:
config[key] = bool(config[key])
# Model specific post processing of config
parse_list(config, "n_attractors")
# adjust n_bins for each bin configuration if bin_conf is given and n_bins is passed in overwrite_kwargs
if 'bin_conf' in config and 'n_bins' in overwrite_kwargs:
bin_conf = config['bin_conf'] # list of dicts
n_bins = overwrite_kwargs['n_bins']
new_bin_conf = []
for conf in bin_conf:
conf['n_bins'] = n_bins
new_bin_conf.append(conf)
config['bin_conf'] = new_bin_conf
if mode == "train":
orig_dataset = dataset
if dataset == "mix":
dataset = 'nyu' # Use nyu as default for mix. Dataset config is changed accordingly while loading the dataloader
if dataset is not None:
config['project'] = f"MonoDepth3-{orig_dataset}" # Set project for wandb
if dataset is not None:
config['dataset'] = dataset
config = {**DATASETS_CONFIG[dataset], **config}
config['model'] = model_name
typed_config = {k: infer_type(v) for k, v in config.items()}
# add hostname to config
config['hostname'] = platform.node()
return edict(typed_config)
def change_dataset(config, new_dataset):
config.update(DATASETS_CONFIG[new_dataset])
return config
|