File size: 6,710 Bytes
38e3f9b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
import numpy as np
import plotly.express as px
import plotly.graph_objects as go
import plotly.colors as pc

def vis_camera(RT_list, rescale_T=1):
    fig = go.Figure()
    showticklabels = True
    visible = True
    # scene_bounds = 1.5
    scene_bounds = 2.0
    base_radius = 2.5
    zoom_scale = 1.5
    fov_deg = 50.0
    
    edges = [(0, 1), (0, 2), (0, 3), (1, 2), (2, 3), (3, 1), (3, 4)] 
    
    colors = px.colors.qualitative.Plotly
    
    cone_list = []
    n = len(RT_list)
    color_scale = pc.sample_colorscale("Reds", [i / (len(RT_list) - 1) for i in range(len(RT_list))])
    # color_scale = pc.sample_colorscale("Blues ", [0.3 + 0.7 * i / (len(RT_list) - 1) for i in range(len(RT_list))])
    color_scale = pc.sample_colorscale("Blues", [0.4 + 0.6 * i / (len(RT_list) - 1) for i in range(len(RT_list))])
    # color_scale = pc.sample_colorscale("Cividis", [0.3 + 0.7 * i / (len(RT_list) - 1) for i in range(len(RT_list))])
    # color_scale = pc.sample_colorscale("Viridis", [0.3 + 0.7 * i / (len(RT_list) - 1) for i in range(len(RT_list))])
    


    for i, RT in enumerate(RT_list):
        R = RT[:,:3]
        T = RT[:,-1]/rescale_T
        cone = calc_cam_cone_pts_3d_org(R, T, fov_deg, scale=0.15)
        # cone_list.append((cone, (i*1/n, "green"), f"view_{i}"))
        # color = colors[i % len(colors)]  # 从颜色列表中循环选择颜色
        cone_list.append((cone, color_scale[i], f"view_{i}"))

    
    for (cone, clr, legend) in cone_list:
        for (i, edge) in enumerate(edges):
            (x1, x2) = (cone[edge[0], 0], cone[edge[1], 0])
            (y1, y2) = (cone[edge[0], 1], cone[edge[1], 1])
            (z1, z2) = (cone[edge[0], 2], cone[edge[1], 2])
            fig.add_trace(go.Scatter3d(
                x=[x1, x2], y=[y1, y2], z=[z1, z2], mode='lines',
                line=dict(color=clr, width=6),
                # line={
                #     'size': 30,
                #     'opacity': 0.8,
                # },
                name=legend, showlegend=(i == 0))) 
    fig.update_layout(
                    height=500,
                    autosize=True,
                    # hovermode=False,
                    margin=go.layout.Margin(l=0, r=0, b=0, t=0),
                    
                    showlegend=True,
                    legend=dict(
                        yanchor='bottom',
                        y=0.01,
                        xanchor='right',
                        x=0.99,
                    ),
                    scene=dict(
                        aspectmode='manual',
                        aspectratio=dict(x=1, y=1, z=1.0),
                        camera=dict(
                            center=dict(x=0.0, y=0.0, z=0.0),
                            up=dict(x=0.0, y=-1.0, z=0.0),
                            eye=dict(x=scene_bounds/2, y=-scene_bounds/2, z=-scene_bounds/2),
                            ),

                        xaxis=dict(
                            range=[-scene_bounds, scene_bounds],
                            showticklabels=showticklabels,
                            visible=visible,
                        ),
                            
                        
                        yaxis=dict(
                            range=[-scene_bounds, scene_bounds],
                            showticklabels=showticklabels,
                            visible=visible,
                        ),
                            
                        
                        zaxis=dict(
                            range=[-scene_bounds, scene_bounds],
                            showticklabels=showticklabels,
                            visible=visible,
                        )
                    ))
    
    return fig


def calc_cam_cone_pts_3d(R_W2C, T_W2C, fov_deg, scale=1.0, set_canonical=False, first_frame_RT=None):
    fov_rad = np.deg2rad(fov_deg)
    R_W2C_inv = np.linalg.inv(R_W2C)

    # 定义视锥体的长度
    height = scale  # 视锥体的高度
    width = height * np.tan(fov_rad / 2)  # 视锥体在给定FOV下的宽度

    # 计算相机中心位置
    T = np.zeros_like(T_W2C) - T_W2C
    T = np.dot(R_W2C_inv, T)
    cam_x, cam_y, cam_z = T

    # 定义视锥体的四个顶点
    corn1 = np.array([width, width, height])
    corn2 = np.array([-width, width, height])
    corn3 = np.array([-width, -width, height])
    corn4 = np.array([width, -width, height])

    # 将顶点从相机坐标转换到世界坐标
    corners = np.stack([corn1, corn2, corn3, corn4]) - T_W2C
    corners = np.dot(R_W2C_inv, corners.T).T

    # 将视锥体顶点与相机中心坐标组合
    xs = [cam_x] + corners[:, 0].tolist()
    ys = [cam_y] + corners[:, 1].tolist()
    zs = [cam_z] + corners[:, 2].tolist()

    return np.array([xs, ys, zs]).T


def calc_cam_cone_pts_3d_org(R_W2C, T_W2C, fov_deg, scale=0.1, set_canonical=False, first_frame_RT=None):
    fov_rad = np.deg2rad(fov_deg)
    R_W2C_inv = np.linalg.inv(R_W2C)

    # Camera pose center:
    T = np.zeros_like(T_W2C) - T_W2C
    T = np.dot(R_W2C_inv, T)
    cam_x = T[0]
    cam_y = T[1]
    cam_z = T[2]
    if set_canonical:
        T = np.zeros_like(T_W2C)
        T = np.dot(first_frame_RT[:,:3], T) + first_frame_RT[:,-1]
        T = T - T_W2C 
        T = np.dot(R_W2C_inv, T)
        cam_x = T[0]
        cam_y = T[1]
        cam_z = T[2]

    # vertex
    corn1 = np.array([np.tan(fov_rad / 2.0), 0.5*np.tan(fov_rad / 2.0), 1.0]) *scale 
    corn2 = np.array([-np.tan(fov_rad / 2.0), 0.5*np.tan(fov_rad / 2.0), 1.0]) *scale
    corn3 = np.array([0, -0.25*np.tan(fov_rad / 2.0), 1.0]) *scale
    corn4 = np.array([0, -0.5*np.tan(fov_rad / 2.0), 1.0]) *scale

    corn1 = corn1 - T_W2C
    corn2 = corn2 - T_W2C
    corn3 = corn3 - T_W2C
    corn4 = corn4 - T_W2C
    
    corn1 = np.dot(R_W2C_inv, corn1)
    corn2 = np.dot(R_W2C_inv, corn2)
    corn3 = np.dot(R_W2C_inv, corn3) 
    corn4 = np.dot(R_W2C_inv, corn4) 

    # Now attach as offset to actual 3D camera position:
    corn_x1 = corn1[0]
    corn_y1 = corn1[1]
    corn_z1 = corn1[2]
    
    corn_x2 = corn2[0]
    corn_y2 = corn2[1]
    corn_z2 = corn2[2]
    
    corn_x3 = corn3[0]
    corn_y3 = corn3[1]
    corn_z3 = corn3[2]
    
    corn_x4 = corn4[0]
    corn_y4 = corn4[1]
    corn_z4 = corn4[2]
            

    xs = [cam_x, corn_x1, corn_x2, corn_x3, corn_x4, ]
    ys = [cam_y, corn_y1, corn_y2, corn_y3, corn_y4, ]
    zs = [cam_z, corn_z1, corn_z2, corn_z3, corn_z4, ]

    return np.array([xs, ys, zs]).T

    
def vis_camera_rescale(RTs):
    rescale_T = 1.0
    rescale_T = max(rescale_T, np.max(np.abs(RTs[:, :, -1])) / 1.9)
    fig = vis_camera(RTs, rescale_T=rescale_T)
    # fig.show()
    return fig