Spaces:
Running
on
Zero
Running
on
Zero
File size: 9,743 Bytes
38e3f9b 399e1c1 38e3f9b 399e1c1 38e3f9b 399e1c1 38e3f9b d5f3775 38e3f9b d5f3775 38e3f9b 8c00727 38e3f9b 8c00727 38e3f9b 399e1c1 38e3f9b 399e1c1 38e3f9b 399e1c1 38e3f9b 399e1c1 38e3f9b 399e1c1 38e3f9b 399e1c1 38e3f9b 399e1c1 38e3f9b 399e1c1 38e3f9b 399e1c1 d5f3775 399e1c1 d5f3775 399e1c1 d5f3775 38e3f9b 399e1c1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 |
import gradio as gr
from PIL import Image
import numpy as np
from copy import deepcopy
import cv2
from objctrl_2_5d.utils.vis_camera import vis_camera_rescale
from objctrl_2_5d.utils.objmask_util import trajectory_to_camera_poses_v1
from objctrl_2_5d.utils.customized_cam import rotation, clockwise, pan_and_zoom
CAMERA_MODE = ["None", "ZoomIn", "ZoomOut", "PanRight", "PanLeft", "TiltUp", "TiltDown", "ClockWise", "Anti-CW", "Rotate60"]
zc_threshold = 0.2
depth_scale_ = 5.2
center_margin = 10
height, width = 320, 576
num_frames = 14
intrinsics = np.array([[float(width), float(width), float(width) / 2, float(height) / 2]])
intrinsics = np.repeat(intrinsics, num_frames, axis=0) # [n_frame, 4]
fx = intrinsics[0, 0] / width
fy = intrinsics[0, 1] / height
cx = intrinsics[0, 2] / width
cy = intrinsics[0, 3] / height
def process_image(raw_image):
image, points = raw_image['image'], raw_image['points']
try:
assert(len(points)) == 1, "Please select only one point"
[x1, y1, _, x2, y2, _] = points[0]
image = image.crop((x1, y1, x2, y2))
image = image.resize((width, height))
except:
image = image.resize((width, height))
return image, gr.update(value={'image': image})
# -------------- general UI functionality --------------
def get_subject_points(canvas):
return canvas["image"], canvas["points"]
def mask_image(image,
mask,
color=[255,0,0],
alpha=0.5):
""" Overlay mask on image for visualization purpose.
Args:
image (H, W, 3) or (H, W): input image
mask (H, W): mask to be overlaid
color: the color of overlaid mask
alpha: the transparency of the mask
"""
out = deepcopy(image)
img = deepcopy(image)
img[mask == 1] = color
out = cv2.addWeighted(img, alpha, out, 1-alpha, 0, out)
return out
def get_points(img,
sel_pix,
evt: gr.SelectData):
# collect the selected point
img = np.array(img)
img = deepcopy(img)
sel_pix.append(evt.index)
# only draw the last two points
# if len(sel_pix) > 2:
# sel_pix = sel_pix[-2:]
points = []
for idx, point in enumerate(sel_pix):
if idx % 2 == 0:
# draw a red circle at the handle point
cv2.circle(img, tuple(point), 10, (255, 0, 0), -1)
else:
# draw a blue circle at the handle point
cv2.circle(img, tuple(point), 10, (0, 0, 255), -1)
points.append(tuple(point))
# draw an arrow from handle point to target point
# if len(points) == idx + 1:
if idx > 0:
line_length = np.sqrt((points[idx][0] - points[idx-1][0])**2 + (points[idx][1] - points[idx-1][1])**2)
arrow_head_length = 10
tip_length = arrow_head_length / line_length
cv2.arrowedLine(img, points[idx-1], points[idx], (0, 255, 0), 4, tipLength=tip_length)
# points = []
return img if isinstance(img, np.ndarray) else np.array(img), sel_pix
# clear all handle/target points
def undo_points(original_image):
return original_image, []
def interpolate_points(points, num_points):
x = points[:, 0]
y = points[:, 1]
# Interpolating the points
t = np.linspace(0, 1, len(points))
t_new = np.linspace(0, 1, num_points)
x_new = np.interp(t_new, t, x)
y_new = np.interp(t_new, t, y)
return np.vstack((x_new, y_new)).T # []
def traj2cam(traj, depth, rescale):
if len(traj) == 0:
return None, None, 0.0, gr.update(value=CAMERA_MODE[0])
traj = np.array(traj)
trajectory = interpolate_points(traj, num_frames)
center_h_margin, center_w_margin = center_margin, center_margin
depth_center = np.mean(depth[height//2-center_h_margin:height//2+center_h_margin, width//2-center_w_margin:width//2+center_w_margin])
if rescale == 0:
rescale = 1
depth_rescale = round(depth_scale_ * rescale / depth_center, 2)
r_depth = depth * depth_rescale
zc = []
for i in range(num_frames):
zc.append(r_depth[int(trajectory[i][1]), int(trajectory[i][0])])
# print(f'zc: {zc}')
## norm zc
zc_norm = np.array(zc)
zc_grad = zc_norm[1:] - zc_norm[:-1]
zc_grad = np.abs(zc_grad)
zc_grad = zc_grad[1:] - zc_grad[:-1]
zc_grad_std = np.std(zc_grad)
if zc_grad_std > zc_threshold:
zc = [zc[0]] * num_frames
# print(f'zc_grad_std: {zc_grad_std}, zc_threshold: {zc_threshold}')
# print(f'zc: {zc}')
traj_w2c = trajectory_to_camera_poses_v1(trajectory, intrinsics, num_frames, zc=zc) # numpy: [n_frame, 4, 4]
RTs = traj_w2c[:, :3]
fig = vis_camera_rescale(RTs)
return RTs, fig, rescale, gr.update(value=CAMERA_MODE[0])
def get_rotate_cam(angle, depth):
# mean_depth = np.mean(depth * mask)
center_h_margin, center_w_margin = center_margin, center_margin
depth_center = np.mean(depth[height//2-center_h_margin:height//2+center_h_margin, width//2-center_w_margin:width//2+center_w_margin])
# print(f'rotate depth_center: {depth_center}')
RTs = rotation(num_frames, angle, depth_center, depth_center)
fig = vis_camera_rescale(RTs)
return RTs, fig
def get_clockwise_cam(angle, depth, mask):
# mask = mask.astype(np.float32) # [0, 1]
# mean_depth = np.mean(depth * mask)
# center_h_margin, center_w_margin = center_margin, center_margin
# depth_center = np.mean(depth[height//2-center_h_margin:height//2+center_h_margin, width//2-center_w_margin:width//2+center_w_margin])
RTs = clockwise(angle, num_frames)
# RTs[:, -1, -1] = mean_depth
fig = vis_camera_rescale(RTs)
return RTs, fig
def get_translate_cam(Tx, Ty, Tz, depth, mask, speed):
# mask = mask.astype(np.float32) # [0, 1]
# mean_depth = np.mean(depth * mask)
T = np.array([Tx, Ty, Tz])
T = T.reshape(3, 1)
T = T[None, ...].repeat(num_frames, axis=0)
RTs = pan_and_zoom(T, speed, n=num_frames)
# RTs[:, -1, -1] += mean_depth
fig = vis_camera_rescale(RTs)
return RTs, fig
def get_camera_pose(camera_mode):
# camera_mode = ["None", "ZoomIn", "ZoomOut", "PanLeft", "PanRight", "TiltUp", "TiltDown", "ClockWise", "Anti-CW", "Rotate60"]
def trigger_camera_pose(camera_option, depth, mask, rescale, angle, speed):
if camera_option == camera_mode[0]: # None
RTs = None
fig = None
elif camera_option == camera_mode[1]: # ZoomIn
RTs, fig = get_translate_cam(0, 0, -1, depth, mask, speed)
elif camera_option == camera_mode[2]: # ZoomOut
RTs, fig = get_translate_cam(0, 0, 1, depth, mask, speed)
elif camera_option == camera_mode[3]: # PanLeft
RTs, fig = get_translate_cam(-1, 0, 0, depth, mask, speed)
elif camera_option == camera_mode[4]: # PanRight
RTs, fig = get_translate_cam(1, 0, 0, depth, mask, speed)
elif camera_option == camera_mode[5]: # TiltUp
RTs, fig = get_translate_cam(0, 1, 0, depth, mask, speed)
elif camera_option == camera_mode[6]: # TiltDown
RTs, fig = get_translate_cam(0, -1, 0, depth, mask, speed)
elif camera_option == camera_mode[7]: # ClockWise
RTs, fig = get_clockwise_cam(-angle, depth, mask)
elif camera_option == camera_mode[8]: # Anti-CW
RTs, fig = get_clockwise_cam(angle, depth, mask)
else: # Rotate60
RTs, fig = get_rotate_cam(angle, depth)
rescale = 0.0
return RTs, fig, rescale
return trigger_camera_pose
import os
from glob import glob
import json
def get_mid_params(raw_input, canvas, mask, selected_points, camera_option, bg_mode, shared_wapring_latents, generated_video):
output_dir = "./assets/examples"
os.makedirs(output_dir, exist_ok=True)
# folders = sorted(glob(output_dir + "/*"))
folders = os.listdir(output_dir)
folders = [int(folder) for folder in folders if os.path.isdir(os.path.join(output_dir, folder))]
num = sorted(folders)[-1] + 1 if folders else 0
fout = open(os.path.join(output_dir, f'examples.json'), 'a+')
cur_folder = os.path.join(output_dir, f'{num:05d}')
os.makedirs(cur_folder, exist_ok=True)
raw_image = raw_input['image']
raw_points = raw_input['points']
seg_image = canvas['image']
seg_points = canvas['points']
mask = Image.fromarray(mask)
mask_path = os.path.join(cur_folder, 'mask.png')
mask.save(mask_path)
raw_image_path = os.path.join(cur_folder, 'raw_image.png')
seg_image_path = os.path.join(cur_folder, 'seg_image.png')
raw_image.save(os.path.join(cur_folder, 'raw_image.png'))
seg_image.save(os.path.join(cur_folder, 'seg_image.png'))
gen_path = os.path.join(cur_folder, 'generated_video.mp4')
cmd = f"cp {generated_video} {gen_path}"
os.system(cmd)
# data = [{'image': raw_image_path, 'points': raw_points},
# {'image': seg_image_path, 'points': seg_points},
# mask_path,
# str(selected_points),
# camera_option,
# bg_mode,
# gen_path]
data = {f'{num:05d}': [{'image': raw_image_path},
str(raw_points),
{'image': seg_image_path},
str(seg_points),
mask_path,
str(selected_points),
camera_option,
bg_mode,
shared_wapring_latents,
gen_path]}
fout.write(json.dumps(data) + '\n')
fout.close()
|