File size: 30,810 Bytes
399e1c1
 
 
 
 
37c595d
0510aa0
399e1c1
 
0510aa0
37c595d
 
 
 
399e1c1
979cf8b
c305f12
 
0510aa0
c305f12
 
 
 
37c595d
399e1c1
c305f12
37c595d
 
 
c305f12
 
 
37c595d
 
 
 
 
 
a61fc0e
 
0429f26
 
37c595d
 
 
 
 
 
 
c100c8b
37c595d
 
 
 
 
 
 
 
 
 
 
0429f26
37c595d
 
 
 
 
0429f26
 
 
37c595d
 
 
6c0ae25
ebc1cb2
 
 
 
37c595d
 
 
 
0429f26
 
 
3f8a975
37c595d
 
 
 
 
 
 
 
 
 
399e1c1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
37c595d
 
399e1c1
 
37c595d
 
 
 
 
 
 
 
 
 
399e1c1
37c595d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
979cf8b
4b34a73
979cf8b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
399e1c1
c305f12
4724339
c305f12
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
399e1c1
c305f12
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
979cf8b
c305f12
 
 
 
37c595d
399e1c1
 
4b34a73
399e1c1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4b34a73
399e1c1
b2a3331
 
399e1c1
 
 
 
 
 
b2a3331
399e1c1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
37c595d
 
 
 
 
 
 
 
 
 
 
 
 
399e1c1
 
37c595d
 
 
399e1c1
 
37c595d
 
399e1c1
37c595d
 
 
 
 
 
 
399e1c1
 
 
 
 
 
 
 
37c595d
 
 
 
399e1c1
37c595d
399e1c1
 
37c595d
 
 
 
 
 
 
 
 
 
 
 
 
 
399e1c1
 
 
 
 
 
 
37c595d
 
 
 
 
 
 
 
 
 
399e1c1
 
 
 
 
 
37c595d
 
 
 
 
399e1c1
 
37c595d
 
 
399e1c1
 
 
 
 
 
 
 
 
 
37c595d
399e1c1
37c595d
 
 
ebc1cb2
37c595d
 
 
399e1c1
 
37c595d
 
 
 
ebc1cb2
37c595d
 
 
 
399e1c1
 
 
37c595d
 
 
4b34a73
37c595d
 
 
 
 
399e1c1
 
37c595d
 
 
979cf8b
37c595d
399e1c1
37c595d
 
 
 
 
 
 
 
 
 
 
 
 
399e1c1
 
 
 
 
 
 
37c595d
399e1c1
d5f3775
37c595d
 
 
c305f12
37c595d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
399e1c1
 
 
 
 
 
 
 
 
1cc2bd8
399e1c1
 
 
37c595d
 
 
 
 
399e1c1
 
 
 
 
37c595d
 
 
399e1c1
37c595d
399e1c1
37c595d
 
 
399e1c1
 
 
37c595d
399e1c1
 
37c595d
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
try:
    import spaces
except:
    pass

import os
import gradio as gr
import json
import ast

import torch
from gradio_image_prompter import ImagePrompter
from sam2.sam2_image_predictor import SAM2ImagePredictor
from omegaconf import OmegaConf
from PIL import Image, ImageDraw
import numpy as np
from copy import deepcopy
import cv2

import torch.nn.functional as F
import torchvision
from einops import rearrange
import tempfile

from objctrl_2_5d.utils.ui_utils import process_image, get_camera_pose, get_subject_points, get_points, undo_points, mask_image, traj2cam, get_mid_params
from ZoeDepth.zoedepth.utils.misc import colorize

from cameractrl.inference import get_pipeline

from objctrl_2_5d.utils.objmask_util import RT2Plucker, Unprojected, roll_with_ignore_multidim, dilate_mask_pytorch
from objctrl_2_5d.utils.filter_utils import get_freq_filter, freq_mix_3d

### Title and Description ###
#### Description ####
title = r"""<h1 align="center">ObjCtrl-2.5D: Training-free Object Control with Camera Poses</h1>"""
# subtitle = r"""<h2 align="center">Deployed on SVD Generation</h2>"""
important_link = r"""
<div align='center'>
 <a href='https://wzhouxiff.github.io/projects/ObjCtrl-2.5D/assets/ObjCtrl-2.5D.pdf'>[Paper]</a>
&ensp; <a href='https://arxiv.org/pdf/2412.07721'>[arxiv]</a>
&ensp; <a href='https://wzhouxiff.github.io/projects/ObjCtrl-2.5D/'>[Project Page]</a>
&ensp; <a href='https://github.com/wzhouxiff/ObjCtrl-2.5D'>[Code]</a>
</div>
"""

authors = r"""
<div align='center'>
 <a href='https://wzhouxiff.github.io/'>Zhouxia Wang</a>
&ensp; <a href='https://nirvanalan.github.io/'>Yushi Lan</a>
&ensp; <a href='https://shangchenzhou.com/'>Shangchen Zhou</a>
&ensp; <a href='https://www.mmlab-ntu.com/person/ccloy/index.html'>Chen Change Loy</a>
</div>
"""

affiliation = r"""
<div align='center'>
 <a href='https://www.mmlab-ntu.com/'>S-Lab, NTU Singapore</a>
</div>
"""

description = r"""
<b>Official Gradio demo</b> for <a href='https://github.com/wzhouxiff/ObjCtrl-2.5D' target='_blank'><b>ObjCtrl-2.5D: Training-free Object Control with Camera Poses</b></a>.<br>
🔥 ObjCtrl2.5D enables object motion control in a I2V generated video via transforming 2D trajectories to 3D using depth, subsequently converting them into camera poses, 
thereby leveraging the exisitng camera motion control module for object motion control without requiring additional training.<br>
"""

article = r"""
If ObjCtrl2.5D is helpful, please help to ⭐ the <a href='https://github.com/wzhouxiff/ObjCtrl-2.5D' target='_blank'>Github Repo</a>. Thanks! 
[![GitHub Stars](https://img.shields.io/github/stars/wzhouxiff%2FObjCtrl-2.5D
)](https://github.com/wzhouxiff/ObjCtrl-2.5D)

---

📝 **License**
<br>
This project is licensed under <a href="https://github.com/wzhouxiff/ObjCtrl-2.5D/blob/main/LICENSE">S-Lab License 1.0</a>, 
Redistribution and use for non-commercial purposes should follow this license.

📝 **Citation**
<br>
If our work is useful for your research, please consider citing:
```bibtex
@inproceedings{objctrl2.5d,
  title={ObjCtrl-2.5D: Training-free Object Control with Camera Poses},
  author={Wang, Zhouxia and Lan, Yushi and Zhou, Shangchen and Loy, Chen Change},
  booktitle={arXiv preprint arXiv:2412.07721},
  year={2024}
}
```

📧 **Contact**
<br>
If you have any questions, please feel free to reach me out at <b>zhouzi1212@gmail.com</b>.

"""

# pre-defined parameters
DEBUG = False

if DEBUG:
    cur_OUTPUT_PATH = 'outputs/tmp'
    os.makedirs(cur_OUTPUT_PATH, exist_ok=True)

# num_inference_steps=25
min_guidance_scale = 1.0
max_guidance_scale = 3.0

area_ratio = 0.3
depth_scale_ = 5.2
center_margin = 10

height, width = 320, 576
num_frames = 14

intrinsics = np.array([[float(width), float(width), float(width) / 2, float(height) / 2]])
intrinsics = np.repeat(intrinsics, num_frames, axis=0) # [n_frame, 4]
fx = intrinsics[0, 0] / width
fy = intrinsics[0, 1] / height
cx = intrinsics[0, 2] / width
cy = intrinsics[0, 3] / height

down_scale = 8
H, W = height // down_scale, width // down_scale
K = np.array([[width / down_scale, 0, W / 2], [0, width / down_scale, H / 2], [0, 0, 1]])


# -------------- initialization --------------

# CAMERA_MODE = ["Traj2Cam", "Rotate", "Clockwise", "Translate"]
CAMERA_MODE = ["None", "ZoomIn", "ZoomOut", "PanRight", "PanLeft", "TiltUp", "TiltDown", "ClockWise", "Anti-CW", "Rotate60"]

# select the device for computation
if torch.cuda.is_available():
    device = torch.device("cuda")
elif torch.backends.mps.is_available():
    device = torch.device("mps")
else:
    device = torch.device("cpu")
print(f"using device: {device}")

# # segmentation model
segmentor = SAM2ImagePredictor.from_pretrained("facebook/sam2-hiera-tiny", cache_dir="ckpt", device=device)

# depth model
d_model_NK = torch.hub.load('./ZoeDepth', 'ZoeD_NK', source='local', pretrained=True).to(device)

# cameractrl model
config = "configs/svd_320_576_cameractrl.yaml"
model_id = "stabilityai/stable-video-diffusion-img2vid"
ckpt = "checkpoints/CameraCtrl_svd.ckpt"
if not os.path.exists(ckpt):
    os.makedirs("checkpoints", exist_ok=True)
    os.system("wget -c https://huggingface.co/hehao13/CameraCtrl_SVD_ckpts/resolve/main/CameraCtrl_svd.ckpt?download=true")
    os.system("mv CameraCtrl_svd.ckpt?download=true checkpoints/CameraCtrl_svd.ckpt")
model_config = OmegaConf.load(config)


pipeline = get_pipeline(model_id, "unet", model_config['down_block_types'], model_config['up_block_types'],
                        model_config['pose_encoder_kwargs'], model_config['attention_processor_kwargs'],
                        ckpt, True, device)

# segmentor = None
# d_model_NK = None
# pipeline = None

### run the demo ##
@spaces.GPU(duration=7)
def segment(canvas, image, logits):
    if logits is not None:
        logits *=  32.0
    _, points = get_subject_points(canvas)
    image = np.array(image)

    with torch.inference_mode(), torch.autocast("cuda", dtype=torch.bfloat16):
        segmentor.set_image(image)
        input_points = []
        input_boxes = []
        for p in points:
            [x1, y1, _, x2, y2, _] = p
            if x2==0 and y2==0:
                input_points.append([x1, y1])
            else:
                input_boxes.append([x1, y1, x2, y2])
        if len(input_points) == 0:
            input_points = None
            input_labels = None
        else:
            input_points = np.array(input_points)
            input_labels = np.ones(len(input_points))
        if len(input_boxes) == 0:
            input_boxes = None
        else:
            input_boxes = np.array(input_boxes)
        masks, _, logits = segmentor.predict(
            point_coords=input_points,
            point_labels=input_labels,
            box=input_boxes,
            multimask_output=False,
            return_logits=True,
            mask_input=logits,
        )
        mask = masks > 0
        masked_img = mask_image(image, mask[0], color=[252, 140, 90], alpha=0.9)
        masked_img = Image.fromarray(masked_img)
        
    return mask[0], {'image': masked_img, 'points': points}, logits / 32.0

@spaces.GPU(duration=80)
def run_objctrl_2_5d(condition_image, 
                        mask, 
                        depth, 
                        RTs, 
                        bg_mode, 
                        shared_wapring_latents, 
                        scale_wise_masks, 
                        rescale, 
                        seed, 
                        ds, dt, 
                        num_inference_steps=25):
    seed = int(seed)
            
    center_h_margin, center_w_margin = center_margin, center_margin
    depth_center = np.mean(depth[height//2-center_h_margin:height//2+center_h_margin, width//2-center_w_margin:width//2+center_w_margin])
    
    if rescale > 0:
        depth_rescale = round(depth_scale_ * rescale / depth_center, 2)
    else:
        depth_rescale = 1.0
        
    depth = depth * depth_rescale
    
    depth_down = F.interpolate(torch.tensor(depth).unsqueeze(0).unsqueeze(0), 
                                (H, W), mode='bilinear', align_corners=False).squeeze().numpy() # [H, W]
    
    ## latent
    generator = torch.Generator()
    generator.manual_seed(seed)
    
    latents_org = pipeline.prepare_latents(
            1,
            14,
            8,
            height,
            width,
            pipeline.dtype,
            device,
            generator,
            None,
        )
    latents_org = latents_org / pipeline.scheduler.init_noise_sigma
    
    cur_plucker_embedding, _, _ = RT2Plucker(RTs, RTs.shape[0], (height, width), fx, fy, cx, cy) # 6, V, H, W
    cur_plucker_embedding = cur_plucker_embedding.to(device)
    cur_plucker_embedding = cur_plucker_embedding[None, ...] # b 6 f h w
    cur_plucker_embedding = cur_plucker_embedding.permute(0, 2, 1, 3, 4) # b f 6 h w
    cur_plucker_embedding = cur_plucker_embedding[:, :num_frames, ...]
    cur_pose_features = pipeline.pose_encoder(cur_plucker_embedding)
    
    # bg_mode = ["Fixed", "Reverse", "Free"]
    if bg_mode == "Fixed":
        fix_RTs = np.repeat(RTs[0][None, ...], num_frames, axis=0) # [n_frame, 4, 3]
        fix_plucker_embedding, _, _ = RT2Plucker(fix_RTs, num_frames, (height, width), fx, fy, cx, cy) # 6, V, H, W
        fix_plucker_embedding = fix_plucker_embedding.to(device)
        fix_plucker_embedding = fix_plucker_embedding[None, ...] # b 6 f h w
        fix_plucker_embedding = fix_plucker_embedding.permute(0, 2, 1, 3, 4) # b f 6 h w
        fix_plucker_embedding = fix_plucker_embedding[:, :num_frames, ...]
        fix_pose_features = pipeline.pose_encoder(fix_plucker_embedding)
        
    elif bg_mode == "Reverse":
        bg_plucker_embedding, _, _ = RT2Plucker(RTs[::-1], RTs.shape[0], (height, width), fx, fy, cx, cy) # 6, V, H, W
        bg_plucker_embedding = bg_plucker_embedding.to(device)
        bg_plucker_embedding = bg_plucker_embedding[None, ...] # b 6 f h w
        bg_plucker_embedding = bg_plucker_embedding.permute(0, 2, 1, 3, 4) # b f 6 h w
        bg_plucker_embedding = bg_plucker_embedding[:, :num_frames, ...]
        fix_pose_features = pipeline.pose_encoder(bg_plucker_embedding)
        
    else:
        fix_pose_features = None
        
    #### preparing mask

    mask = Image.fromarray(mask)
    mask = mask.resize((W, H))
    mask = np.array(mask).astype(np.float32)
    mask = np.expand_dims(mask, axis=-1)
    
    # visulize mask
    if DEBUG:
        mask_sum_vis = mask[..., 0]
        mask_sum_vis = (mask_sum_vis * 255.0).astype(np.uint8)
        mask_sum_vis = Image.fromarray(mask_sum_vis)
        
        mask_sum_vis.save(f'{cur_OUTPUT_PATH}/org_mask.png')
    
    try:
        warped_masks = Unprojected(mask, depth_down, RTs, H=H, W=W, K=K)
    
        warped_masks.insert(0, mask)
            
    except:
        # mask to bbox
        print(f'!!! Mask is too small to warp; mask to bbox') 
        mask = mask[:, :, 0]
        coords = cv2.findNonZero(mask)
        x, y, w, h = cv2.boundingRect(coords)
        # mask[y:y+h, x:x+w] = 1.0
        
        center_x, center_y = x + w // 2, y + h // 2
        center_z = depth_down[center_y, center_x]
        
        # RTs [n_frame, 3, 4] to [n_frame, 4, 4] , add [0, 0, 0, 1]
        RTs = np.concatenate([RTs, np.array([[[0, 0, 0, 1]]] * num_frames)], axis=1)
        
        # RTs: world to camera
        P0 = np.array([center_x, center_y, 1])
        Pc0 = np.linalg.inv(K) @ P0 * center_z
        pw = np.linalg.inv(RTs[0]) @ np.array([Pc0[0], Pc0[1], center_z, 1]) # [4]
        
        P = [np.array([center_x, center_y])]
        for i in range(1, num_frames):
            Pci = RTs[i] @ pw
            Pi = K @ Pci[:3] / Pci[2]
            P.append(Pi[:2])
        
        warped_masks = [mask]
        for i in range(1, num_frames):
            shift_x = int(round(P[i][0] - P[0][0]))
            shift_y = int(round(P[i][1] - P[0][1]))

            cur_mask = roll_with_ignore_multidim(mask, [shift_y, shift_x])
            warped_masks.append(cur_mask)
            
            
        warped_masks = [v[..., None] for v in warped_masks]
            
    warped_masks = np.stack(warped_masks, axis=0) # [f, h, w]
    warped_masks = np.repeat(warped_masks, 3, axis=-1) # [f, h, w, 3]
    
    mask_sum = np.sum(warped_masks, axis=0, keepdims=True)  # [1, H, W, 3]
    mask_sum[mask_sum > 1.0] = 1.0
    mask_sum = mask_sum[0,:,:, 0]
    
    if DEBUG:
        ## visulize warp mask    
        warp_masks_vis = torch.tensor(warped_masks)
        warp_masks_vis = (warp_masks_vis * 255.0).to(torch.uint8)
        torchvision.io.write_video(f'{cur_OUTPUT_PATH}/warped_masks.mp4', warp_masks_vis, fps=10, video_codec='h264', options={'crf': '10'})
        
        # visulize mask
        mask_sum_vis = mask_sum
        mask_sum_vis = (mask_sum_vis * 255.0).astype(np.uint8)
        mask_sum_vis = Image.fromarray(mask_sum_vis)
        
        mask_sum_vis.save(f'{cur_OUTPUT_PATH}/merged_mask.png')
        
    if scale_wise_masks:
        min_area = H * W * area_ratio # cal in downscale
        non_zero_len = mask_sum.sum() 
        
        print(f'non_zero_len: {non_zero_len}, min_area: {min_area}')
        
        if non_zero_len > min_area:
            kernel_sizes = [1, 1, 1, 3]
        elif non_zero_len > min_area * 0.5:
            kernel_sizes = [3, 1, 1, 5]
        else:
            kernel_sizes = [5, 3, 3, 7]
    else:
        kernel_sizes = [1, 1, 1, 1]
        
    mask = torch.from_numpy(mask_sum) # [h, w]
    mask = mask[None, None, ...] # [1, 1, h, w]
    mask = F.interpolate(mask, (height, width), mode='bilinear', align_corners=False) # [1, 1, H, W]
    # mask = mask.repeat(1, num_frames, 1, 1) # [1, f, H, W]
    mask = mask.to(pipeline.dtype).to(device)
    
    ##### Mask End ######
    
    ### Got blending pose features Start ###

    pose_features = []
    for i in range(0, len(cur_pose_features)):
        kernel_size = kernel_sizes[i]
        h, w = cur_pose_features[i].shape[-2:]
        
        if fix_pose_features is None:
            pose_features.append(torch.zeros_like(cur_pose_features[i]))
        else:
            pose_features.append(fix_pose_features[i])
            
        cur_mask = F.interpolate(mask, (h, w), mode='bilinear', align_corners=False)
        cur_mask = dilate_mask_pytorch(cur_mask, kernel_size=kernel_size) # [1, 1, H, W]
        cur_mask = cur_mask.repeat(1, num_frames, 1, 1) # [1, f, H, W]
        
        if DEBUG:
            # visulize mask
            mask_vis = cur_mask[0, 0].cpu().numpy() * 255.0
            mask_vis = Image.fromarray(mask_vis.astype(np.uint8))
            mask_vis.save(f'{cur_OUTPUT_PATH}/mask_k{kernel_size}_scale{i}.png')
            
        cur_mask = cur_mask[None, ...] # [1, 1, f, H, W]
        pose_features[-1] = cur_pose_features[i] * cur_mask + pose_features[-1] * (1 - cur_mask)

    ### Got blending pose features End ###
    
    ##### Warp Noise Start ######
    
    if shared_wapring_latents:
        noise = latents_org[0, 0].data.cpu().numpy().copy() #[14, 4, 40, 72]
        noise = np.transpose(noise, (1, 2, 0)) # [40, 72, 4]

        try:
            warp_noise = Unprojected(noise, depth_down, RTs, H=H, W=W, K=K)
            warp_noise.insert(0, noise)
        except:
            print(f'!!! Noise is too small to warp; mask to bbox')
            
            warp_noise = [noise]
            for i in range(1, num_frames):
                shift_x = int(round(P[i][0] - P[0][0]))
                shift_y = int(round(P[i][1] - P[0][1]))
                
                cur_noise= roll_with_ignore_multidim(noise, [shift_y, shift_x])
                warp_noise.append(cur_noise)
                
            warp_noise = np.stack(warp_noise, axis=0) # [f, h, w, 4]
    
        if DEBUG:
            ## visulize warp noise
            warp_noise_vis = torch.tensor(warp_noise)[..., :3] * torch.tensor(warped_masks)
            warp_noise_vis = (warp_noise_vis - warp_noise_vis.min()) / (warp_noise_vis.max() - warp_noise_vis.min())
            warp_noise_vis = (warp_noise_vis * 255.0).to(torch.uint8)
    
            torchvision.io.write_video(f'{cur_OUTPUT_PATH}/warp_noise.mp4', warp_noise_vis, fps=10, video_codec='h264', options={'crf': '10'})
    
    
        warp_latents = torch.tensor(warp_noise).permute(0, 3, 1, 2).to(latents_org.device).to(latents_org.dtype) # [frame, 4, H, W]
        warp_latents = warp_latents.unsqueeze(0) # [1, frame, 4, H, W]
        
        warped_masks = torch.tensor(warped_masks).permute(0, 3, 1, 2).unsqueeze(0) # [1, frame, 3, H, W]
        mask_extend = torch.concat([warped_masks, warped_masks[:,:,0:1]], dim=2) # [1, frame, 4, H, W]
        mask_extend = mask_extend.to(latents_org.device).to(latents_org.dtype)
        
        warp_latents = warp_latents * mask_extend + latents_org * (1 - mask_extend)
        warp_latents = warp_latents.permute(0, 2, 1, 3, 4)
        random_noise = latents_org.clone().permute(0, 2, 1, 3, 4)
            
        filter_shape = warp_latents.shape

        freq_filter = get_freq_filter(
            filter_shape, 
            device = device, 
            filter_type='butterworth',
            n=4,
            d_s=ds,
            d_t=dt
        )
        
        warp_latents = freq_mix_3d(warp_latents, random_noise, freq_filter)
        warp_latents = warp_latents.permute(0, 2, 1, 3, 4)
        
    else:
        warp_latents = latents_org.clone()
        
    generator.manual_seed(42)

    with torch.no_grad():
        result = pipeline(
            image=condition_image,
            pose_embedding=cur_plucker_embedding,
            height=height,
            width=width,
            num_frames=num_frames,
            num_inference_steps=num_inference_steps,
            min_guidance_scale=min_guidance_scale,
            max_guidance_scale=max_guidance_scale,
            do_image_process=True,
            generator=generator,
            output_type='pt',
            pose_features= pose_features,
            latents = warp_latents
        ).frames[0].cpu() #[f, c, h, w]
        
    
    result = rearrange(result, 'f c h w -> f h w c')
    result = (result * 255.0).to(torch.uint8)

    video_path = tempfile.NamedTemporaryFile(suffix='.mp4').name
    torchvision.io.write_video(video_path, result, fps=10, video_codec='h264', options={'crf': '8'})
    
    return video_path


# UI function
@spaces.GPU(duration=7)
def process_image(raw_image, trajectory_points):
    
    image, points = raw_image['image'], raw_image['points']
    
    print(points)
    
    try:
        assert(len(points)) == 1, "Please draw only one bbox"
        [x1, y1, _, x2, y2, _] = points[0]
        
        image = image.crop((x1, y1, x2, y2))
        image = image.resize((width, height))
    except:
        image = image.resize((width, height))

    depth = d_model_NK.infer_pil(image)    
    colored_depth = colorize(depth, cmap='gray_r') # [h, w, 4] 0-255
    
    depth_img = deepcopy(colored_depth[:, :, :3])
    if len(trajectory_points) > 0:
        for idx, point in enumerate(trajectory_points):
            if idx % 2 == 0:
                cv2.circle(depth_img, tuple(point), 10, (255, 0, 0), -1)
            else:
                cv2.circle(depth_img, tuple(point), 10, (0, 0, 255), -1)
            if idx > 0:
                line_length = np.sqrt((trajectory_points[idx][0] - trajectory_points[idx-1][0])**2 + (trajectory_points[idx][1] - trajectory_points[idx-1][1])**2)
                arrow_head_length = 10
                tip_length = arrow_head_length / line_length
                cv2.arrowedLine(depth_img, trajectory_points[idx-1], trajectory_points[idx], (0, 255, 0), 4, tipLength=tip_length)
    
    return image, {'image': image}, depth, depth_img, colored_depth[:, :, :3]



def draw_points_on_image(img, points):
    # img = Image.fromarray(np.array(image))
    draw = ImageDraw.Draw(img)
    
    for p in points:
        x1, y1, _, x2, y2, _ = p
        
        if x2 == 0 and y2 == 0:
            # Point: 青色点带黑边
            point_radius = 4
            draw.ellipse(
                (x1 - point_radius, y1 - point_radius, x1 + point_radius, y1 + point_radius),
                fill="cyan", outline="black", width=1
            )
        else:
            # Bounding Box: 黑色矩形框
            draw.rectangle([x1, y1, x2, y2], outline="black", width=3)
    
    return img

@spaces.GPU(duration=15)
def from_examples(raw_input, raw_image_points, canvas, seg_image_points, selected_points_text, camera_option, mask_bk):
    raw_image_points = ast.literal_eval(raw_image_points)
    seg_image_points = ast.literal_eval(seg_image_points)
    
    selected_points = ast.literal_eval(selected_points_text)
    mask = np.array(mask_bk)
    mask = mask[:,:,0] > 0
    selected_points = ast.literal_eval(selected_points_text)
    
    image, _, depth, depth_img, colored_depth = process_image({'image': raw_input['image'], 'points': raw_image_points}, selected_points)
    
    # get camera pose
    if camera_option == "None":
        # traj2came
        rescale = 1.0
        camera_pose, camera_pose_vis, rescale, _ = traj2cam(selected_points,  depth , rescale)
    else:
        rescale = 0.0
        angle = 60
        speed = 4.0
        camera_pose, camera_pose_vis, rescale = get_camera_pose(CAMERA_MODE)(camera_option, depth, mask, rescale, angle, speed)
        
    
    raw_image = draw_points_on_image(raw_input['image'], raw_image_points)
    seg_image = draw_points_on_image(canvas['image'], seg_image_points)
        
    return image, mask, depth, depth_img, colored_depth, camera_pose, \
            camera_pose_vis, rescale, selected_points, \
            gr.update(value={'image': raw_image, 'points': raw_image_points}), \
            gr.update(value={'image': seg_image, 'points': seg_image_points}), \


# -------------- UI definition --------------
with gr.Blocks() as demo:
    # layout definition
    gr.Markdown(title)
    gr.Markdown(authors)
    gr.Markdown(affiliation)
    gr.Markdown(important_link)
    gr.Markdown(description)
    
    
    # with gr.Row():
    #     gr.Markdown("""# <center>Repositioning the Subject within Image </center>""")
    mask = gr.State(value=None) # store mask
    mask_bk = gr.Image(type="pil", label="Mask", show_label=True, interactive=False, visible=False)
    
    removal_mask = gr.State(value=None) # store removal mask
    selected_points = gr.State([]) # store points
    selected_points_text = gr.Textbox(label="Selected Points", visible=False)
    raw_image_points = gr.Textbox(label="Raw Image Points", visible=False)
    seg_image_points = gr.Textbox(label="Segment Image Points", visible=False)
    
    original_image = gr.State(value=None) # store original input image
    # masked_original_image = gr.State(value=None) # store masked input image
    mask_logits = gr.State(value=None) # store mask logits
    
    depth = gr.State(value=None) # store depth
    org_depth_image = gr.State(value=None) # store original depth image
    
    camera_pose = gr.State(value=None) # store camera pose
    
    rescale = gr.Slider(minimum=0.0, maximum=10, step=0.1, value=1.0, label="Rescale", interactive=True, visible=False)
    angle = gr.Slider(minimum=-360, maximum=360, step=1, value=60, label="Angle", interactive=True, visible=False)
    
    seed = gr.Textbox(value = "42", label="Seed", interactive=True, visible=False)
    scale_wise_masks = gr.Checkbox(label="Enable Scale-wise Masks", interactive=True, value=True, visible=False)
    ds = gr.Slider(minimum=0.0, maximum=1, step=0.1, value=0.25, label="ds", interactive=True, visible=False)
    dt = gr.Slider(minimum=0.0, maximum=1, step=0.1, value=0.1, label="dt", interactive=True, visible=False)
    
    with gr.Column():
        
        outlines = """
        <font size="5"><b>There are total 5 steps to complete the task.</b></font>
        - Step 1: Input an image and Crop it to a suitable size and attained depth;
        - Step 2: Attain the subject mask;
        - Step 3: Draw trajectory on depth map or skip to use camera pose;
        - Step 4: Select camera poses or skip.
        - Step 5: Generate the final video.
        """
        
        gr.Markdown(outlines)
        
        
        with gr.Row():
            with gr.Column():
                # Step 1: Input Image
                step1_dec = """
                    <font size="4"><b>Step 1: Input Image</b></font>
                    """
                step1 = gr.Markdown(step1_dec)
                raw_input = ImagePrompter(type="pil", label="Raw Image", show_label=True, interactive=True)
                
                step1_notes = """
                - Select the region using a <mark>bounding box</mark>, aiming for a ratio close to </mark>320:576</mark> (height:width).
                - If the input is in 320 x 576, press `Process` directly.
                """
                notes = gr.Markdown(step1_notes)
                
                process_button = gr.Button("Process")
                
            with gr.Column():
                # Step 2: Get Subject Mask
                step2_dec = """
                    <font size="4"><b>Step 2: Get Subject Mask</b></font>
                    """
                step2 = gr.Markdown(step2_dec)
                canvas = ImagePrompter(type="pil", label="Input Image", show_label=True, interactive=True) # for mask painting

                step2_notes = """
                    - Use the <mark>bounding boxes</mark> or <mark>points</mark> to select the subject.
                    - Press `Segment Subject` to get the mask. <mark>Can be refined iteratively by updating points<mark>.
                """
                notes = gr.Markdown(step2_notes)

                select_button = gr.Button("Segment Subject")
                
            with gr.Column():
                # Step 3: Get Depth and Draw Trajectory
                step3_dec = """
                    <font size="4"><b>Step 3: Draw Trajectory on Depth or <mark>SKIP</mark></b></font>
                    
                """
                step3 = gr.Markdown(step3_dec)
                depth_image = gr.Image(type="pil", label="Depth Image", show_label=True, interactive=False)
                
                step3_dec = """
                    - Selecting points on the depth image. <mark>No more than 14 points</mark>.
                    - Press `Undo point` to remove all points. Press `Traj2Cam` to get camera poses.
                    """
                notes = gr.Markdown(step3_dec)
                
                undo_button = gr.Button("Undo point")
                traj2cam_button = gr.Button("Traj2Cam")
                
        with gr.Row():
            
            with gr.Column():
                # Step 4: Trajectory to Camera Pose or Get Camera Pose
                step4_dec = """
                    <font size="4"><b>Step 4: Get Customized Camera Poses or <mark>SKIP</mark></b></font>
                """
                step4 = gr.Markdown(step4_dec)
                camera_pose_vis = gr.Plot(None, label='Camera Pose')
                camera_option = gr.Radio(choices = CAMERA_MODE, label='Camera Options', value=CAMERA_MODE[0], interactive=True)
                speed = gr.Slider(minimum=0.1, maximum=10, step=0.1, value=4.0, label="Speed", interactive=True, visible=True)
                        
            with gr.Column():
                # Step 5: Get the final generated video
                step5_dec = """
                    <font size="4"><b>Step 5: Get the Final Generated Video</b></font>
                """
                step5 = gr.Markdown(step5_dec)
                generated_video = gr.Video(None, label='Generated Video')
                
                # with gr.Row():
                bg_mode = gr.Radio(choices = ["Fixed", "Reverse", "Free"], label="Background Mode", value="Fixed", interactive=True)
                shared_wapring_latents = gr.Checkbox(label="Enable Shared Warping Latents", interactive=True, value=False, visible=True)
                
                generated_button = gr.Button("Generate")

                get_mid_params_button = gr.Button("Get Mid Params", visible=False)
                

    # # event definition
    process_button.click(
        fn = process_image,
        inputs = [raw_input, selected_points],
        outputs = [original_image, canvas, depth, depth_image, org_depth_image]
    )
    
    select_button.click(
        segment,
        [canvas, original_image, mask_logits],
        [mask, canvas, mask_logits]
    )
    
    depth_image.select(
        get_points,
        [depth_image, selected_points],
        [depth_image, selected_points],
    )
    undo_button.click(
        undo_points,
        [org_depth_image],
        [depth_image, selected_points]
    )
    
    traj2cam_button.click(
        traj2cam,
        [selected_points, depth, rescale],
        [camera_pose, camera_pose_vis, rescale, camera_option]
    )
    
    camera_option.change(
        get_camera_pose(CAMERA_MODE),
        [camera_option, depth, mask, rescale, angle, speed],
        [camera_pose, camera_pose_vis, rescale]
    )
    
    generated_button.click(
        run_objctrl_2_5d,
        [
         original_image,
         mask,
         depth,
         camera_pose,
         bg_mode,
         shared_wapring_latents,
         scale_wise_masks,
         rescale,
         seed,
         ds,
         dt,
        #  num_inference_steps
         ],
        [generated_video],
    )
    
    get_mid_params_button.click(
        get_mid_params,
        [raw_input, canvas, mask, selected_points, camera_option, bg_mode, shared_wapring_latents, generated_video]
    )
    
    ## Get examples
    with open('./assets/examples/examples.json', 'r') as f:
        examples = json.load(f)
        # print(examples)
    
    # examples = [examples]
    examples = [v for k, v in examples.items()]

    gr.Examples(
        examples=examples,
        inputs=[
            raw_input,
            raw_image_points,
            canvas,
            seg_image_points,
            mask_bk,
            selected_points_text,  # selected_points
            camera_option,
            bg_mode,
            shared_wapring_latents,
            generated_video
        ],
        examples_per_page=20
    )
    
    selected_points_text.change(
        from_examples,
        inputs=[raw_input, raw_image_points, canvas, seg_image_points, selected_points_text, camera_option, mask_bk],
        outputs=[original_image, mask, depth, depth_image, org_depth_image, camera_pose, camera_pose_vis, rescale, selected_points, raw_input, canvas]
    )
    
            


    gr.Markdown(article)


demo.queue().launch(share=True)