File size: 6,215 Bytes
38e3f9b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.

# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.

import logging
import os

import torch
from hydra import compose
from hydra.utils import instantiate
from omegaconf import OmegaConf

import sam2

# Check if the user is running Python from the parent directory of the sam2 repo
# (i.e. the directory where this repo is cloned into) -- this is not supported since
# it could shadow the sam2 package and cause issues.
if os.path.isdir(os.path.join(sam2.__path__[0], "sam2")):
    # If the user has "sam2/sam2" in their path, they are likey importing the repo itself
    # as "sam2" rather than importing the "sam2" python package (i.e. "sam2/sam2" directory).
    # This typically happens because the user is running Python from the parent directory
    # that contains the sam2 repo they cloned.
    raise RuntimeError(
        "You're likely running Python from the parent directory of the sam2 repository "
        "(i.e. the directory where https://github.com/facebookresearch/sam2 is cloned into). "
        "This is not supported since the `sam2` Python package could be shadowed by the "
        "repository name (the repository is also named `sam2` and contains the Python package "
        "in `sam2/sam2`). Please run Python from another directory (e.g. from the repo dir "
        "rather than its parent dir, or from your home directory) after installing SAM 2."
    )


HF_MODEL_ID_TO_FILENAMES = {
    "facebook/sam2-hiera-tiny": (
        "configs/sam2/sam2_hiera_t.yaml",
        "sam2_hiera_tiny.pt",
    ),
    "facebook/sam2-hiera-small": (
        "configs/sam2/sam2_hiera_s.yaml",
        "sam2_hiera_small.pt",
    ),
    "facebook/sam2-hiera-base-plus": (
        "configs/sam2/sam2_hiera_b+.yaml",
        "sam2_hiera_base_plus.pt",
    ),
    "facebook/sam2-hiera-large": (
        "configs/sam2/sam2_hiera_l.yaml",
        "sam2_hiera_large.pt",
    ),
    "facebook/sam2.1-hiera-tiny": (
        "configs/sam2.1/sam2.1_hiera_t.yaml",
        "sam2.1_hiera_tiny.pt",
    ),
    "facebook/sam2.1-hiera-small": (
        "configs/sam2.1/sam2.1_hiera_s.yaml",
        "sam2.1_hiera_small.pt",
    ),
    "facebook/sam2.1-hiera-base-plus": (
        "configs/sam2.1/sam2.1_hiera_b+.yaml",
        "sam2.1_hiera_base_plus.pt",
    ),
    "facebook/sam2.1-hiera-large": (
        "configs/sam2.1/sam2.1_hiera_l.yaml",
        "sam2.1_hiera_large.pt",
    ),
}


def build_sam2(
    config_file,
    ckpt_path=None,
    device="cuda",
    mode="eval",
    hydra_overrides_extra=[],
    apply_postprocessing=True,
    **kwargs,
):

    if apply_postprocessing:
        hydra_overrides_extra = hydra_overrides_extra.copy()
        hydra_overrides_extra += [
            # dynamically fall back to multi-mask if the single mask is not stable
            "++model.sam_mask_decoder_extra_args.dynamic_multimask_via_stability=true",
            "++model.sam_mask_decoder_extra_args.dynamic_multimask_stability_delta=0.05",
            "++model.sam_mask_decoder_extra_args.dynamic_multimask_stability_thresh=0.98",
        ]
    # Read config and init model
    cfg = compose(config_name=config_file, overrides=hydra_overrides_extra)
    OmegaConf.resolve(cfg)
    model = instantiate(cfg.model, _recursive_=True)
    _load_checkpoint(model, ckpt_path)
    model = model.to(device)
    if mode == "eval":
        model.eval()
    return model


def build_sam2_video_predictor(
    config_file,
    ckpt_path=None,
    device="cuda",
    mode="eval",
    hydra_overrides_extra=[],
    apply_postprocessing=True,
    **kwargs,
):
    hydra_overrides = [
        "++model._target_=sam2.sam2_video_predictor.SAM2VideoPredictor",
    ]
    if apply_postprocessing:
        hydra_overrides_extra = hydra_overrides_extra.copy()
        hydra_overrides_extra += [
            # dynamically fall back to multi-mask if the single mask is not stable
            "++model.sam_mask_decoder_extra_args.dynamic_multimask_via_stability=true",
            "++model.sam_mask_decoder_extra_args.dynamic_multimask_stability_delta=0.05",
            "++model.sam_mask_decoder_extra_args.dynamic_multimask_stability_thresh=0.98",
            # the sigmoid mask logits on interacted frames with clicks in the memory encoder so that the encoded masks are exactly as what users see from clicking
            "++model.binarize_mask_from_pts_for_mem_enc=true",
            # fill small holes in the low-res masks up to `fill_hole_area` (before resizing them to the original video resolution)
            "++model.fill_hole_area=8",
        ]
    hydra_overrides.extend(hydra_overrides_extra)

    # Read config and init model
    cfg = compose(config_name=config_file, overrides=hydra_overrides)
    OmegaConf.resolve(cfg)
    model = instantiate(cfg.model, _recursive_=True)
    _load_checkpoint(model, ckpt_path)
    model = model.to(device)
    if mode == "eval":
        model.eval()
    return model


def _hf_download(model_id, **kwargs):
    from huggingface_hub import hf_hub_download

    config_name, checkpoint_name = HF_MODEL_ID_TO_FILENAMES[model_id]
    ckpt_path = hf_hub_download(repo_id=model_id, filename=checkpoint_name, **kwargs)
    return config_name, ckpt_path


def build_sam2_hf(model_id, cache_dir, device):
    config_name, ckpt_path = _hf_download(model_id, cache_dir=cache_dir)
    return build_sam2(config_file=config_name, ckpt_path=ckpt_path, device=device)


def build_sam2_video_predictor_hf(model_id, **kwargs):
    config_name, ckpt_path = _hf_download(model_id)
    return build_sam2_video_predictor(
        config_file=config_name, ckpt_path=ckpt_path, **kwargs
    )


def _load_checkpoint(model, ckpt_path):
    if ckpt_path is not None:
        sd = torch.load(ckpt_path, map_location="cpu", weights_only=True)["model"]
        missing_keys, unexpected_keys = model.load_state_dict(sd)
        if missing_keys:
            logging.error(missing_keys)
            raise RuntimeError()
        if unexpected_keys:
            logging.error(unexpected_keys)
            raise RuntimeError()
        logging.info("Loaded checkpoint sucessfully")