Spaces:
Running
on
Zero
Running
on
Zero
File size: 6,215 Bytes
38e3f9b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 |
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import logging
import os
import torch
from hydra import compose
from hydra.utils import instantiate
from omegaconf import OmegaConf
import sam2
# Check if the user is running Python from the parent directory of the sam2 repo
# (i.e. the directory where this repo is cloned into) -- this is not supported since
# it could shadow the sam2 package and cause issues.
if os.path.isdir(os.path.join(sam2.__path__[0], "sam2")):
# If the user has "sam2/sam2" in their path, they are likey importing the repo itself
# as "sam2" rather than importing the "sam2" python package (i.e. "sam2/sam2" directory).
# This typically happens because the user is running Python from the parent directory
# that contains the sam2 repo they cloned.
raise RuntimeError(
"You're likely running Python from the parent directory of the sam2 repository "
"(i.e. the directory where https://github.com/facebookresearch/sam2 is cloned into). "
"This is not supported since the `sam2` Python package could be shadowed by the "
"repository name (the repository is also named `sam2` and contains the Python package "
"in `sam2/sam2`). Please run Python from another directory (e.g. from the repo dir "
"rather than its parent dir, or from your home directory) after installing SAM 2."
)
HF_MODEL_ID_TO_FILENAMES = {
"facebook/sam2-hiera-tiny": (
"configs/sam2/sam2_hiera_t.yaml",
"sam2_hiera_tiny.pt",
),
"facebook/sam2-hiera-small": (
"configs/sam2/sam2_hiera_s.yaml",
"sam2_hiera_small.pt",
),
"facebook/sam2-hiera-base-plus": (
"configs/sam2/sam2_hiera_b+.yaml",
"sam2_hiera_base_plus.pt",
),
"facebook/sam2-hiera-large": (
"configs/sam2/sam2_hiera_l.yaml",
"sam2_hiera_large.pt",
),
"facebook/sam2.1-hiera-tiny": (
"configs/sam2.1/sam2.1_hiera_t.yaml",
"sam2.1_hiera_tiny.pt",
),
"facebook/sam2.1-hiera-small": (
"configs/sam2.1/sam2.1_hiera_s.yaml",
"sam2.1_hiera_small.pt",
),
"facebook/sam2.1-hiera-base-plus": (
"configs/sam2.1/sam2.1_hiera_b+.yaml",
"sam2.1_hiera_base_plus.pt",
),
"facebook/sam2.1-hiera-large": (
"configs/sam2.1/sam2.1_hiera_l.yaml",
"sam2.1_hiera_large.pt",
),
}
def build_sam2(
config_file,
ckpt_path=None,
device="cuda",
mode="eval",
hydra_overrides_extra=[],
apply_postprocessing=True,
**kwargs,
):
if apply_postprocessing:
hydra_overrides_extra = hydra_overrides_extra.copy()
hydra_overrides_extra += [
# dynamically fall back to multi-mask if the single mask is not stable
"++model.sam_mask_decoder_extra_args.dynamic_multimask_via_stability=true",
"++model.sam_mask_decoder_extra_args.dynamic_multimask_stability_delta=0.05",
"++model.sam_mask_decoder_extra_args.dynamic_multimask_stability_thresh=0.98",
]
# Read config and init model
cfg = compose(config_name=config_file, overrides=hydra_overrides_extra)
OmegaConf.resolve(cfg)
model = instantiate(cfg.model, _recursive_=True)
_load_checkpoint(model, ckpt_path)
model = model.to(device)
if mode == "eval":
model.eval()
return model
def build_sam2_video_predictor(
config_file,
ckpt_path=None,
device="cuda",
mode="eval",
hydra_overrides_extra=[],
apply_postprocessing=True,
**kwargs,
):
hydra_overrides = [
"++model._target_=sam2.sam2_video_predictor.SAM2VideoPredictor",
]
if apply_postprocessing:
hydra_overrides_extra = hydra_overrides_extra.copy()
hydra_overrides_extra += [
# dynamically fall back to multi-mask if the single mask is not stable
"++model.sam_mask_decoder_extra_args.dynamic_multimask_via_stability=true",
"++model.sam_mask_decoder_extra_args.dynamic_multimask_stability_delta=0.05",
"++model.sam_mask_decoder_extra_args.dynamic_multimask_stability_thresh=0.98",
# the sigmoid mask logits on interacted frames with clicks in the memory encoder so that the encoded masks are exactly as what users see from clicking
"++model.binarize_mask_from_pts_for_mem_enc=true",
# fill small holes in the low-res masks up to `fill_hole_area` (before resizing them to the original video resolution)
"++model.fill_hole_area=8",
]
hydra_overrides.extend(hydra_overrides_extra)
# Read config and init model
cfg = compose(config_name=config_file, overrides=hydra_overrides)
OmegaConf.resolve(cfg)
model = instantiate(cfg.model, _recursive_=True)
_load_checkpoint(model, ckpt_path)
model = model.to(device)
if mode == "eval":
model.eval()
return model
def _hf_download(model_id, **kwargs):
from huggingface_hub import hf_hub_download
config_name, checkpoint_name = HF_MODEL_ID_TO_FILENAMES[model_id]
ckpt_path = hf_hub_download(repo_id=model_id, filename=checkpoint_name, **kwargs)
return config_name, ckpt_path
def build_sam2_hf(model_id, cache_dir, device):
config_name, ckpt_path = _hf_download(model_id, cache_dir=cache_dir)
return build_sam2(config_file=config_name, ckpt_path=ckpt_path, device=device)
def build_sam2_video_predictor_hf(model_id, **kwargs):
config_name, ckpt_path = _hf_download(model_id)
return build_sam2_video_predictor(
config_file=config_name, ckpt_path=ckpt_path, **kwargs
)
def _load_checkpoint(model, ckpt_path):
if ckpt_path is not None:
sd = torch.load(ckpt_path, map_location="cpu", weights_only=True)["model"]
missing_keys, unexpected_keys = model.load_state_dict(sd)
if missing_keys:
logging.error(missing_keys)
raise RuntimeError()
if unexpected_keys:
logging.error(unexpected_keys)
raise RuntimeError()
logging.info("Loaded checkpoint sucessfully")
|