File size: 35,025 Bytes
11e6f7b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
# ---------------------------------------------------------------
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved.
#
# This work is licensed under the NVIDIA Source Code License
# for LSGM. To view a copy of this license, see the LICENSE file.
# ---------------------------------------------------------------

from pdb import set_trace as st
from abc import ABC, abstractmethod
import numpy as np
import torch
import gc
from .continuous_distributions import log_p_standard_normal, log_p_var_normal
from .continuous_diffusion_utils import trace_df_dx_hutchinson, sample_gaussian_like, sample_rademacher_like, get_mixed_prediction
from torchdiffeq import odeint
from torch.cuda.amp import autocast
from timeit import default_timer as timer

from guided_diffusion import dist_util, logger


def make_diffusion(args):
    """ simple diffusion factory function to return diffusion instances. Only use this to create continuous diffusions """
    if args.sde_sde_type == 'geometric_sde':
        return DiffusionGeometric(args)
    elif args.sde_sde_type == 'vpsde':
        return DiffusionVPSDE(args)
    elif args.sde_sde_type == 'sub_vpsde':
        return DiffusionSubVPSDE(args)
    elif args.sde_sde_type == 'vesde':
        return DiffusionVESDE(args)
    else:
        raise ValueError("Unrecognized sde type: {}".format(args.sde_sde_type))


class DiffusionBase(ABC):
    """
    Abstract base class for all diffusion implementations.
    """

    def __init__(self, args):
        super().__init__()
        self.args = args
        self.sigma2_0 = args.sde_sigma2_0
        self.sde_type = args.sde_sde_type

    @abstractmethod
    def f(self, t):
        """ returns the drift coefficient at time t: f(t) """
        pass

    @abstractmethod
    def g2(self, t):
        """ returns the squared diffusion coefficient at time t: g^2(t) """
        pass

    @abstractmethod
    def var(self, t):
        """ returns variance at time t, \sigma_t^2"""
        pass

    @abstractmethod
    def e2int_f(self, t):
        """ returns e^{\int_0^t f(s) ds} which corresponds to the coefficient of mean at time t. """
        pass

    @abstractmethod
    def inv_var(self, var):
        """ inverse of the variance function at input variance var. """
        pass

    @abstractmethod
    def mixing_component(self, x_noisy, var_t, t, enabled):
        """ returns mixing component which is the optimal denoising model assuming that q(z_0) is N(0, 1) """
        pass

    def sample_q(self, x_init, noise, var_t, m_t):
        """ returns a sample from diffusion process at time t """
        return m_t * x_init + torch.sqrt(var_t) * noise

    def log_snr(self, m_t, var_t):
        return torch.log((torch.square(m_t) / var_t))

    def _predict_x0_from_eps(self, z, eps, logsnr):
        """eps = (z - alpha * x0) / sigma
        """
        return torch.sqrt(1 + torch.exp(-logsnr)) * (
            z - eps * torch.rsqrt(1 + torch.exp(logsnr)))

    def _predict_eps_from_x0(self, z, x0, logsnr):
        """x = (z - sigma * eps) / alpha
        """
        return torch.sqrt(1 + torch.exp(logsnr)) * (
            z - x0 * torch.rsqrt(1 + torch.exp(-logsnr)))
    
    def _predict_eps_from_z_and_v(self, v_t, var_t, z, m_t):
        # TODO, use logsnr here?
        return torch.sqrt(var_t) * z + m_t * v_t

    def _predict_x0_from_z_and_v(self, v_t, var_t, z, m_t):
        return torch.sqrt(var_t) * v_t + m_t * z

    def cross_entropy_const(self, ode_eps):
        """ returns cross entropy factor with variance according to ode integration cutoff ode_eps """
        # _, c, h, w = x_init.shape
        return 0.5 * (1.0 + torch.log(2.0 * np.pi * self.var(
            t=torch.tensor(ode_eps, device=dist_util.dev()))))

    def compute_ode_nll(self, dae, eps, ode_eps, ode_solver_tol,
                        enable_autocast, no_autograd, num_samples, report_std):
        """ calculates NLL based on ODE framework, assuming integration cutoff ode_eps """
        # ODE solver starts consuming the CPU memory without this on large models
        # https://github.com/scipy/scipy/issues/10070
        gc.collect()

        dae.eval()

        def ode_func(t, state):
            """ the ode function (including log probability integration for NLL calculation) """
            global nfe_counter
            nfe_counter = nfe_counter + 1

            x = state[0].detach()
            x.requires_grad_(True)
            noise = sample_gaussian_like(
                x)  # could also use rademacher noise (sample_rademacher_like)
            with torch.set_grad_enabled(True):
                with autocast(enabled=enable_autocast):
                    variance = self.var(t=t)
                    mixing_component = self.mixing_component(
                        x_noisy=x,
                        var_t=variance,
                        t=t,
                        enabled=dae.mixed_prediction)
                    pred_params = dae(x=x, t=t)
                    params = get_mixed_prediction(dae.mixed_prediction,
                                                  pred_params,
                                                  dae.mixing_logit,
                                                  mixing_component)
                    dx_dt = self.f(t=t) * x + 0.5 * self.g2(
                        t=t) * params / torch.sqrt(variance)

                with autocast(enabled=False):
                    dlogp_x_dt = -trace_df_dx_hutchinson(
                        dx_dt, x, noise, no_autograd).view(x.shape[0], 1)

            return (dx_dt, dlogp_x_dt)

        # NFE counter
        global nfe_counter

        nll_all, nfe_all = [], []
        for i in range(num_samples):
            # integrated log probability
            logp_diff_t0 = torch.zeros(eps.shape[0], 1, device=dist_util.dev())

            nfe_counter = 0

            # solve the ODE
            x_t, logp_diff_t = odeint(
                ode_func,
                (eps, logp_diff_t0),
                torch.tensor([ode_eps, 1.0], device=dist_util.dev()),
                atol=ode_solver_tol,
                rtol=ode_solver_tol,
                method="scipy_solver",
                options={"solver": 'RK45'},
            )
            # last output values
            x_t0, logp_diff_t0 = x_t[-1], logp_diff_t[-1]

            # prior
            if self.sde_type == 'vesde':
                logp_prior = torch.sum(log_p_var_normal(x_t0,
                                                        var=self.sigma2_max),
                                       dim=[1, 2, 3])
            else:
                logp_prior = torch.sum(log_p_standard_normal(x_t0),
                                       dim=[1, 2, 3])

            log_likelihood = logp_prior - logp_diff_t0.view(-1)

            nll_all.append(-log_likelihood)
            nfe_all.append(nfe_counter)

        nfe_mean = np.mean(nfe_all)
        nll_all = torch.stack(nll_all, dim=1)
        nll_mean = torch.mean(nll_all, dim=1)
        if num_samples > 1 and report_std:
            nll_stddev = torch.std(nll_all, dim=1)
            nll_stddev_batch = torch.mean(nll_stddev)
            nll_stderror_batch = nll_stddev_batch / np.sqrt(num_samples)
        else:
            nll_stddev_batch = None
            nll_stderror_batch = None
        return nll_mean, nfe_mean, nll_stddev_batch, nll_stderror_batch

    def sample_model_ode(self,
                         dae,
                         num_samples,
                         shape,
                         ode_eps,
                         ode_solver_tol,
                         enable_autocast,
                         temp,
                         noise=None):
        """ generates samples using the ODE framework, assuming integration cutoff ode_eps """
        # ODE solver starts consuming the CPU memory without this on large models
        # https://github.com/scipy/scipy/issues/10070
        gc.collect()

        dae.eval()

        def ode_func(t, x):
            """ the ode function (sampling only, no NLL stuff) """
            global nfe_counter
            nfe_counter = nfe_counter + 1
            with autocast(enabled=enable_autocast):
                variance = self.var(t=t)
                mixing_component = self.mixing_component(
                    x_noisy=x,
                    var_t=variance,
                    t=t,
                    enabled=dae.mixed_prediction)
                pred_params = dae(x=x, t=t)
                params = get_mixed_prediction(dae.mixed_prediction,
                                              pred_params, dae.mixing_logit,
                                              mixing_component)
                dx_dt = self.f(t=t) * x + 0.5 * self.g2(
                    t=t) * params / torch.sqrt(variance)

            return dx_dt

        # the initial noise
        if noise is None:
            noise = torch.randn(size=[num_samples] + shape,
                                device=dist_util.dev())

        if self.sde_type == 'vesde':
            noise_init = temp * noise * np.sqrt(self.sigma2_max)
        else:
            noise_init = temp * noise

        # NFE counter
        global nfe_counter
        nfe_counter = 0

        # solve the ODE
        start = timer()
        samples_out = odeint(
            ode_func,
            noise_init,
            torch.tensor([1.0, ode_eps], device=dist_util.dev()),
            atol=ode_solver_tol,
            rtol=ode_solver_tol,
            method="scipy_solver",
            options={"solver": 'RK45'},
        )
        end = timer()
        ode_solve_time = end - start

        return samples_out[-1], nfe_counter, ode_solve_time

    # def iw_quantities(self, size, time_eps, iw_sample_mode, iw_subvp_like_vp_sde):
    def iw_quantities(self, iw_sample_mode, size=None):

        args = self.args
        time_eps, iw_subvp_like_vp_sde = args.sde_time_eps, args.iw_subvp_like_vp_sde
        if size is None:
            size = args.batch_size

        if self.sde_type in ['geometric_sde', 'vpsde']:
            return self._iw_quantities_vpsdelike(size, time_eps,
                                                 iw_sample_mode)
        elif self.sde_type in ['sub_vpsde']:
            return self._iw_quantities_subvpsdelike(size, time_eps,
                                                    iw_sample_mode,
                                                    iw_subvp_like_vp_sde)
        elif self.sde_type in ['vesde']:
            return self._iw_quantities_vesde(size, time_eps, iw_sample_mode)
        else:
            raise NotImplementedError

    def _iw_quantities_vpsdelike(self, size, time_eps, iw_sample_mode):
        """
        For all SDEs where the underlying SDE is of the form dz = -0.5 * beta(t) * z * dt + sqrt{beta(t)} * dw, like
        for the VPSDE.
        """
        rho = torch.rand(size=[size], device=dist_util.dev())

        # In the following, obj_weight_t corresponds to the weight in front of the l2 loss for the given iw_sample_mode.
        # obj_weight_t_ll corresponds to the weight that converts the weighting scheme in iw_sample_mode to likelihood
        # weighting.

        if iw_sample_mode == 'll_uniform':
            # uniform t sampling - likelihood obj. for both q and p
            t = rho * (1. - time_eps) + time_eps
            var_t, m_t, g2_t = self.var(t), self.e2int_f(t), self.g2(t)
            obj_weight_t = obj_weight_t_ll = g2_t / (2.0 * var_t)

        elif iw_sample_mode == 'll_iw': # ! q-obj
            # importance sampling for likelihood obj. - likelihood obj. for both q and p
            ones = torch.ones_like(rho, device=dist_util.dev())
            sigma2_1, sigma2_eps = self.var(ones), self.var(time_eps * ones)
            log_sigma2_1, log_sigma2_eps = torch.log(sigma2_1), torch.log(
                sigma2_eps)
            var_t = torch.exp(rho * log_sigma2_1 +
                              (1 - rho) * log_sigma2_eps)  # sigma square
            t = self.inv_var(var_t)
            m_t, g2_t = self.e2int_f(t), self.g2(t)  # m_t is alpha_bar
            obj_weight_t = obj_weight_t_ll = 0.5 * (
                log_sigma2_1 - log_sigma2_eps) / (1.0 - var_t)

        elif iw_sample_mode == 'drop_all_uniform':
            # uniform t sampling - likelihood obj. for q, all-prefactors-dropped obj. for p
            t = rho * (1. - time_eps) + time_eps
            var_t, m_t, g2_t = self.var(t), self.e2int_f(t), self.g2(t)
            obj_weight_t = torch.ones(1, device=dist_util.dev())
            obj_weight_t_ll = g2_t / (2.0 * var_t)

        elif iw_sample_mode == 'drop_all_iw':
            # importance sampling for all-pref.-dropped obj. - likelihood obj. for q, all-pref.-dropped obj. for p
            assert self.sde_type == 'vpsde', 'Importance sampling for fully unweighted objective is currently only ' \
                                             'implemented for the regular VPSDE.'
            t = torch.sqrt(1.0 / self.delta_beta_half) * torch.erfinv(
                rho * self.const_norm_2 + self.const_erf) - self.beta_frac
            var_t, m_t, g2_t = self.var(t), self.e2int_f(t), self.g2(t)
            obj_weight_t = self.const_norm / (1.0 - var_t)
            obj_weight_t_ll = obj_weight_t * g2_t / (2.0 * var_t)

        elif iw_sample_mode == 'drop_sigma2t_iw': # ! default mode for p
            # importance sampling for inv_sigma2_t-dropped obj. - likelihood obj. for q, inv_sigma2_t-dropped obj. for p
            ones = torch.ones_like(rho, device=dist_util.dev())
            sigma2_1, sigma2_eps = self.var(ones), self.var(time_eps * ones)
            var_t = rho * sigma2_1 + (1 - rho) * sigma2_eps # ! sigma square
            t = self.inv_var(var_t)
            m_t, g2_t = self.e2int_f(t), self.g2(t) # ! m_t: alpha_bar sqrt
            obj_weight_t = 0.5 * (sigma2_1 - sigma2_eps) / (1.0 - var_t)
            obj_weight_t_ll = obj_weight_t / var_t

        elif iw_sample_mode == 'drop_sigma2t_uniform':
            # uniform sampling for inv_sigma2_t-dropped obj. - likelihood obj. for q, inv_sigma2_t-dropped obj. for p
            t = rho * (1. - time_eps) + time_eps
            var_t, m_t, g2_t = self.var(t), self.e2int_f(t), self.g2(t)
            obj_weight_t = g2_t / 2.0
            obj_weight_t_ll = g2_t / (2.0 * var_t)

        elif iw_sample_mode == 'rescale_iw':
            # importance sampling for 1/(1-sigma2_t) resc. obj. - likelihood obj. for q, 1/(1-sigma2_t) resc. obj. for p
            t = rho * (1. - time_eps) + time_eps
            var_t, m_t, g2_t = self.var(t), self.e2int_f(t), self.g2(t)
            obj_weight_t = 0.5 / (1.0 - var_t)
            obj_weight_t_ll = g2_t / (2.0 * var_t)

        else:
            raise ValueError(
                "Unrecognized importance sampling type: {}".format(
                    iw_sample_mode))

        return t, var_t.view(-1, 1, 1, 1), m_t.view(-1, 1, 1, 1), obj_weight_t.view(-1, 1, 1, 1), \
            obj_weight_t_ll.view(-1, 1, 1, 1), g2_t.view(-1, 1, 1, 1)

    def _iw_quantities_subvpsdelike(self, size, time_eps, iw_sample_mode,
                                    iw_subvp_like_vp_sde):
        """
        For all SDEs where the underlying SDE is of the form
        dz = -0.5 * beta(t) * z * dt + sqrt{beta(t) * (1 - exp[-2 * betaintegral])} * dw, like for the Sub-VPSDE.
        When iw_subvp_like_vp_sde is True, then we define the importance sampling distributions based on an analogous
        VPSDE, while stile using the Sub-VPSDE. The motivation is that deriving the correct importance sampling
        distributions for the Sub-VPSDE itself is hard, but the importance sampling distributions from analogous VPSDEs
        probably already significantly reduce the variance also for the Sub-VPSDE.
        """
        rho = torch.rand(size=[size], device=dist_util.dev())

        # In the following, obj_weight_t corresponds to the weight in front of the l2 loss for the given iw_sample_mode.
        # obj_weight_t_ll corresponds to the weight that converts the weighting scheme in iw_sample_mode to likelihood
        # weighting.
        if iw_sample_mode == 'll_uniform':
            # uniform t sampling - likelihood obj. for both q and p
            t = rho * (1. - time_eps) + time_eps
            var_t, m_t, g2_t = self.var(t), self.e2int_f(t), self.g2(t)
            obj_weight_t = obj_weight_t_ll = g2_t / (2.0 * var_t)

        elif iw_sample_mode == 'll_iw':
            if iw_subvp_like_vp_sde:
                # importance sampling for vpsde likelihood obj. - sub-vpsde likelihood obj. for both q and p
                ones = torch.ones_like(rho, device=dist_util.dev())
                sigma2_1, sigma2_eps = self.var_vpsde(ones), self.var_vpsde(
                    time_eps * ones)
                log_sigma2_1, log_sigma2_eps = torch.log(sigma2_1), torch.log(
                    sigma2_eps)
                var_t_vpsde = torch.exp(rho * log_sigma2_1 +
                                        (1 - rho) * log_sigma2_eps)
                t = self.inv_var_vpsde(var_t_vpsde)
                var_t, m_t, g2_t = self.var(t), self.e2int_f(t), self.g2(t)
                obj_weight_t = obj_weight_t_ll = g2_t / (2.0 * var_t) * \
                    (log_sigma2_1 - log_sigma2_eps) * var_t_vpsde / (1 - var_t_vpsde) / self.beta(t)
            else:
                raise NotImplementedError

        elif iw_sample_mode == 'drop_all_uniform':
            # uniform t sampling - likelihood obj. for q, all-prefactors-dropped obj. for p
            t = rho * (1. - time_eps) + time_eps
            var_t, m_t, g2_t = self.var(t), self.e2int_f(t), self.g2(t)
            obj_weight_t = torch.ones(1, device=dist_util.dev())
            obj_weight_t_ll = g2_t / (2.0 * var_t)

        elif iw_sample_mode == 'drop_all_iw':
            if iw_subvp_like_vp_sde:
                # importance sampling for all-pref.-dropped obj. - likelihood obj. for q, all-pref.-dropped obj. for p
                assert self.sde_type == 'sub_vpsde', 'Importance sampling for fully unweighted objective is ' \
                                                     'currently only implemented for the Sub-VPSDE.'
                t = torch.sqrt(1.0 / self.delta_beta_half) * torch.erfinv(
                    rho * self.const_norm_2 + self.const_erf) - self.beta_frac
                var_t, m_t, g2_t = self.var(t), self.e2int_f(t), self.g2(t)
                obj_weight_t = self.const_norm / (1.0 - self.var_vpsde(t))
                obj_weight_t_ll = obj_weight_t * g2_t / (2.0 * var_t)
            else:
                raise NotImplementedError

        elif iw_sample_mode == 'drop_sigma2t_iw':
            if iw_subvp_like_vp_sde:
                # importance sampling for inv_sigma2_t-dropped obj. - likelihood obj. for q, inv_sigma2_t-dropped obj. for p
                ones = torch.ones_like(rho, device=dist_util.dev())
                sigma2_1, sigma2_eps = self.var_vpsde(ones), self.var_vpsde(
                    time_eps * ones)
                var_t_vpsde = rho * sigma2_1 + (1 - rho) * sigma2_eps
                t = self.inv_var_vpsde(var_t_vpsde)
                var_t, m_t, g2_t = self.var(t), self.e2int_f(t), self.g2(t)
                obj_weight_t = 0.5 * g2_t / self.beta(t) * (
                    sigma2_1 - sigma2_eps) / (1.0 - var_t_vpsde)
                obj_weight_t_ll = obj_weight_t / var_t
            else:
                raise NotImplementedError

        elif iw_sample_mode == 'drop_sigma2t_uniform':
            # uniform sampling for inv_sigma2_t-dropped obj. - likelihood obj. for q, inv_sigma2_t-dropped obj. for p
            t = rho * (1. - time_eps) + time_eps
            var_t, m_t, g2_t = self.var(t), self.e2int_f(t), self.g2(t)
            obj_weight_t = g2_t / 2.0
            obj_weight_t_ll = g2_t / (2.0 * var_t)

        elif iw_sample_mode == 'rescale_iw':
            # importance sampling for 1/(1-sigma2_t) resc. obj. - likelihood obj. for q, 1/(1-sigma2_t) resc. obj. for p
            # Note that we use the sub-vpsde variance to scale the p objective! It's not clear what's optimal here!
            t = rho * (1. - time_eps) + time_eps
            var_t, m_t, g2_t = self.var(t), self.e2int_f(t), self.g2(t)
            obj_weight_t = 0.5 / (1.0 - var_t)
            obj_weight_t_ll = g2_t / (2.0 * var_t)

        else:
            raise ValueError(
                "Unrecognized importance sampling type: {}".format(
                    iw_sample_mode))

        return t, var_t.view(-1, 1, 1, 1), m_t.view(-1, 1, 1, 1), obj_weight_t.view(-1, 1, 1, 1), \
            obj_weight_t_ll.view(-1, 1, 1, 1), g2_t.view(-1, 1, 1, 1)

    def _iw_quantities_vesde(self, size, time_eps, iw_sample_mode):
        """
        For the VESDE.
        """
        rho = torch.rand(size=[size], device=dist_util.dev())

        # In the following, obj_weight_t corresponds to the weight in front of the l2 loss for the given iw_sample_mode.
        # obj_weight_t_ll corresponds to the weight that converts the weighting scheme in iw_sample_mode to likelihood
        # weighting.
        if iw_sample_mode == 'll_uniform':
            # uniform t sampling - likelihood obj. for both q and p
            t = rho * (1. - time_eps) + time_eps
            var_t, m_t, g2_t = self.var(t), self.e2int_f(t), self.g2(t)
            obj_weight_t = obj_weight_t_ll = g2_t / (2.0 * var_t)

        elif iw_sample_mode == 'll_iw':
            # importance sampling for likelihood obj. - likelihood obj. for both q and p
            ones = torch.ones_like(rho, device=dist_util.dev())
            nsigma2_1, nsigma2_eps, sigma2_eps = self.var_N(ones), self.var_N(
                time_eps * ones), self.var(time_eps * ones)
            log_frac_sigma2_1, log_frac_sigma2_eps = torch.log(
                self.sigma2_max / nsigma2_1), torch.log(nsigma2_eps /
                                                        sigma2_eps)
            var_N_t = (1.0 - self.sigma2_min) / (
                1.0 - torch.exp(rho *
                                (log_frac_sigma2_1 + log_frac_sigma2_eps) -
                                log_frac_sigma2_eps))
            t = self.inv_var_N(var_N_t)
            var_t, m_t, g2_t = self.var(t), self.e2int_f(t), self.g2(t)
            obj_weight_t = obj_weight_t_ll = 0.5 * (
                log_frac_sigma2_1 +
                log_frac_sigma2_eps) * self.var_N(t) / (1.0 - self.sigma2_min)

        elif iw_sample_mode == 'drop_all_uniform':
            # uniform t sampling - likelihood obj. for q, all-prefactors-dropped obj. for p
            t = rho * (1. - time_eps) + time_eps
            var_t, m_t, g2_t = self.var(t), self.e2int_f(t), self.g2(t)
            obj_weight_t = torch.ones(1, device=dist_util.dev())
            obj_weight_t_ll = g2_t / (2.0 * var_t)

        elif iw_sample_mode == 'drop_all_iw':
            # importance sampling for all-pref.-dropped obj. - likelihood obj. for q, all-pref.-dropped obj. for p
            ones = torch.ones_like(rho, device=dist_util.dev())
            nsigma2_1, nsigma2_eps, sigma2_eps = self.var_N(ones), self.var_N(
                time_eps * ones), self.var(time_eps * ones)
            log_frac_sigma2_1, log_frac_sigma2_eps = torch.log(
                self.sigma2_max / nsigma2_1), torch.log(nsigma2_eps /
                                                        sigma2_eps)
            var_N_t = (1.0 - self.sigma2_min) / (
                1.0 - torch.exp(rho *
                                (log_frac_sigma2_1 + log_frac_sigma2_eps) -
                                log_frac_sigma2_eps))
            t = self.inv_var_N(var_N_t)
            var_t, m_t, g2_t = self.var(t), self.e2int_f(t), self.g2(t)
            obj_weight_t_ll = 0.5 * (log_frac_sigma2_1 +
                                     log_frac_sigma2_eps) * self.var_N(t) / (
                                         1.0 - self.sigma2_min)
            obj_weight_t = 2.0 * obj_weight_t_ll / np.log(
                self.sigma2_max / self.sigma2_min)

        elif iw_sample_mode == 'drop_sigma2t_iw':
            # importance sampling for inv_sigma2_t-dropped obj. - likelihood obj. for q, inv_sigma2_t-dropped obj. for p
            ones = torch.ones_like(rho, device=dist_util.dev())
            nsigma2_1, nsigma2_eps = self.var_N(ones), self.var_N(time_eps *
                                                                  ones)
            var_N_t = torch.exp(rho * torch.log(nsigma2_1) +
                                (1 - rho) * torch.log(nsigma2_eps))
            t = self.inv_var_N(var_N_t)
            var_t, m_t, g2_t = self.var(t), self.e2int_f(t), self.g2(t)
            obj_weight_t = 0.5 * torch.log(
                nsigma2_1 / nsigma2_eps) * self.var_N(t)
            obj_weight_t_ll = obj_weight_t / var_t

        elif iw_sample_mode == 'drop_sigma2t_uniform':
            # uniform sampling for inv_sigma2_t-dropped obj. - likelihood obj. for q, inv_sigma2_t-dropped obj. for p
            t = rho * (1. - time_eps) + time_eps
            var_t, m_t, g2_t = self.var(t), self.e2int_f(t), self.g2(t)
            obj_weight_t = g2_t / 2.0
            obj_weight_t_ll = g2_t / (2.0 * var_t)

        elif iw_sample_mode == 'rescale_iw':
            # uniform sampling for 1/(1-sigma2_t) resc. obj. - likelihood obj. for q, 1/(1-sigma2_t) resc. obj. for p
            t = rho * (1. - time_eps) + time_eps
            var_t, m_t, g2_t = self.var(t), self.e2int_f(t), self.g2(t)
            obj_weight_t = 0.5 / (1.0 - var_t)
            obj_weight_t_ll = g2_t / (2.0 * var_t)

        else:
            raise ValueError(
                "Unrecognized importance sampling type: {}".format(
                    iw_sample_mode))

        return t, var_t.view(-1, 1, 1, 1), m_t.view(-1, 1, 1, 1), obj_weight_t.view(-1, 1, 1, 1), \
            obj_weight_t_ll.view(-1, 1, 1, 1), g2_t.view(-1, 1, 1, 1)


class DiffusionGeometric(DiffusionBase):
    """
    Diffusion implementation with dz = -0.5 * beta(t) * z * dt + sqrt(beta(t)) * dW SDE and geometric progression of
    variance. This is our new diffusion.
    """

    def __init__(self, args):
        super().__init__(args)
        self.sigma2_min = args.sde_sigma2_min
        self.sigma2_max = args.sde_sigma2_max

    def f(self, t):
        return -0.5 * self.g2(t)

    def g2(self, t):
        sigma2_geom = self.sigma2_min * (
            (self.sigma2_max / self.sigma2_min)**t)
        log_term = np.log(self.sigma2_max / self.sigma2_min)
        return sigma2_geom * log_term / (1.0 - self.sigma2_0 +
                                         self.sigma2_min - sigma2_geom)

    def var(self, t):
        return self.sigma2_min * ((self.sigma2_max / self.sigma2_min)**
                                  t) - self.sigma2_min + self.sigma2_0

    def e2int_f(self, t):
        return torch.sqrt(1.0 + self.sigma2_min *
                          (1.0 - (self.sigma2_max / self.sigma2_min)**t) /
                          (1.0 - self.sigma2_0))

    def inv_var(self, var):
        return torch.log(
            (var + self.sigma2_min - self.sigma2_0) /
            self.sigma2_min) / np.log(self.sigma2_max / self.sigma2_min)

    def mixing_component(self, x_noisy, var_t, t, enabled):
        if enabled:
            return torch.sqrt(var_t) * x_noisy
        else:
            return None


class DiffusionVPSDE(DiffusionBase):
    """
    Diffusion implementation of the VPSDE. This uses the same SDE like DiffusionGeometric but with linear beta(t).
    Note that we need to scale beta_start and beta_end by 1000 relative to JH's DDPM values, since our t is in [0,1].
    """

    def __init__(self, args):
        super().__init__(args)
        # self.beta_start = args.sde_beta_start # 0.1
        # self.beta_end = args.sde_beta_end # 20

        # ! hard coded, in the scale of 1000.
        # beta_start = scale * 0.0001
        # beta_end = scale * 0.02

        self.beta_start = 0.1
        self.beta_end = 20

        # auxiliary constants
        self.time_eps = args.sde_time_eps  # 0.01 by default in LSGM. Any influence?
        self.delta_beta_half = torch.tensor(0.5 *
                                            (self.beta_end - self.beta_start),
                                            device=dist_util.dev())
        self.beta_frac = torch.tensor(self.beta_start /
                                      (self.beta_end - self.beta_start),
                                      device=dist_util.dev())
        self.const_aq = (1.0 - self.sigma2_0) * torch.exp(
            0.5 * self.beta_frac) * torch.sqrt(
                0.25 * np.pi / self.delta_beta_half)
        self.const_erf = torch.erf(
            torch.sqrt(self.delta_beta_half) *
            (self.time_eps + self.beta_frac))
        self.const_norm = self.const_aq * (torch.erf(
            torch.sqrt(self.delta_beta_half) *
            (1.0 + self.beta_frac)) - self.const_erf)
        self.const_norm_2 = torch.erf(
            torch.sqrt(self.delta_beta_half) *
            (1.0 + self.beta_frac)) - self.const_erf

    def f(self, t):
        return -0.5 * self.g2(t)

    def g2(self, t):
        return self.beta_start + (self.beta_end - self.beta_start) * t

    def var(self, t):
        return 1.0 - (1.0 - self.sigma2_0
                      ) * torch.exp(-self.beta_start * t - 0.5 *
                                    (self.beta_end - self.beta_start) * t * t)

    def e2int_f(self, t):
        return torch.exp(-0.5 * self.beta_start * t - 0.25 *
                         (self.beta_end - self.beta_start) * t * t)

    def inv_var(self, var):
        c = torch.log((1 - var) / (1 - self.sigma2_0))
        a = self.beta_end - self.beta_start
        t = (-self.beta_start +
             torch.sqrt(np.square(self.beta_start) - 2 * a * c)) / a
        return t

    def mixing_component(self, x_noisy, var_t, t, enabled):
        if enabled:
            return torch.sqrt(var_t) * x_noisy
        else:
            return None

    def mixing_component_x0(self, x_noisy, var_t, t, enabled):
        if enabled:
            # return torch.sqrt(var_t) * x_noisy
            return torch.sqrt(1-var_t) * x_noisy # zt * alpha_t
        else:
            return None


class DiffusionSubVPSDE(DiffusionBase):
    """
    Diffusion implementation of the sub-VPSDE. Note that this uses a different SDE compared to the above two diffusions.
    """

    def __init__(self, args):
        super().__init__(args)
        self.beta_start = args.sde_beta_start
        self.beta_end = args.sde_beta_end

        # auxiliary constants (assumes regular VPSDE)
        self.time_eps = args.sde_time_eps
        self.delta_beta_half = torch.tensor(0.5 *
                                            (self.beta_end - self.beta_start),
                                            device=dist_util.dev())
        self.beta_frac = torch.tensor(self.beta_start /
                                      (self.beta_end - self.beta_start),
                                      device=dist_util.dev())
        self.const_aq = (1.0 - self.sigma2_0) * torch.exp(
            0.5 * self.beta_frac) * torch.sqrt(
                0.25 * np.pi / self.delta_beta_half)
        self.const_erf = torch.erf(
            torch.sqrt(self.delta_beta_half) *
            (self.time_eps + self.beta_frac))
        self.const_norm = self.const_aq * (torch.erf(
            torch.sqrt(self.delta_beta_half) *
            (1.0 + self.beta_frac)) - self.const_erf)
        self.const_norm_2 = torch.erf(
            torch.sqrt(self.delta_beta_half) *
            (1.0 + self.beta_frac)) - self.const_erf

    def f(self, t):
        return -0.5 * self.beta(t)

    def g2(self, t):
        return self.beta(t) * (
            1.0 - torch.exp(-2.0 * self.beta_start * t -
                            (self.beta_end - self.beta_start) * t * t))

    def var(self, t):
        int_term = torch.exp(-self.beta_start * t - 0.5 *
                             (self.beta_end - self.beta_start) * t * t)
        return torch.square(1.0 - int_term) + self.sigma2_0 * int_term

    def e2int_f(self, t):
        return torch.exp(-0.5 * self.beta_start * t - 0.25 *
                         (self.beta_end - self.beta_start) * t * t)

    def beta(self, t):
        """ auxiliary beta function """
        return self.beta_start + (self.beta_end - self.beta_start) * t

    def inv_var(self, var):
        raise NotImplementedError

    def mixing_component(self, x_noisy, var_t, t, enabled):
        if enabled:
            int_term = torch.exp(-self.beta_start * t - 0.5 *
                                 (self.beta_end - self.beta_start) * t *
                                 t).view(-1, 1, 1, 1)
            return torch.sqrt(var_t) * x_noisy / (
                torch.square(1.0 - int_term) + int_term)
        else:
            return None

    def var_vpsde(self, t):
        return 1.0 - (1.0 - self.sigma2_0
                      ) * torch.exp(-self.beta_start * t - 0.5 *
                                    (self.beta_end - self.beta_start) * t * t)

    def inv_var_vpsde(self, var):
        c = torch.log((1 - var) / (1 - self.sigma2_0))
        a = self.beta_end - self.beta_start
        t = (-self.beta_start +
             torch.sqrt(np.square(self.beta_start) - 2 * a * c)) / a
        return t


class DiffusionVESDE(DiffusionBase):
    """
    Diffusion implementation of the VESDE with dz = sqrt(beta(t)) * dW
    """

    def __init__(self, args):
        super().__init__(args)
        self.sigma2_min = args.sde_sigma2_min
        self.sigma2_max = args.sde_sigma2_max
        assert self.sigma2_min == self.sigma2_0, "VESDE was proposed implicitly assuming sigma2_min = sigma2_0!"

    def f(self, t):
        return torch.zeros_like(t, device=dist_util.dev())

    def g2(self, t):
        return self.sigma2_min * np.log(self.sigma2_max / self.sigma2_min) * (
            (self.sigma2_max / self.sigma2_min)**t)

    def var(self, t):
        return self.sigma2_min * ((self.sigma2_max / self.sigma2_min)**
                                  t) - self.sigma2_min + self.sigma2_0

    def e2int_f(self, t):
        return torch.ones_like(t, device=dist_util.dev())

    def inv_var(self, var):
        return torch.log(
            (var + self.sigma2_min - self.sigma2_0) /
            self.sigma2_min) / np.log(self.sigma2_max / self.sigma2_min)

    def mixing_component(self, x_noisy, var_t, t, enabled):
        if enabled:
            return torch.sqrt(var_t) * x_noisy / (self.sigma2_min * (
                (self.sigma2_max / self.sigma2_min)**t.view(-1, 1, 1, 1)) -
                                                  self.sigma2_min + 1.0)
        else:
            return None

    def var_N(self, t):
        return 1.0 - self.sigma2_min + self.sigma2_min * (
            (self.sigma2_max / self.sigma2_min)**t)

    def inv_var_N(self, var):
        return torch.log(
            (var + self.sigma2_min - 1.0) / self.sigma2_min) / np.log(
                self.sigma2_max / self.sigma2_min)