File size: 25,656 Bytes
11e6f7b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
import functools
import json
import os
from pathlib import Path
from pdb import set_trace as st
import torchvision
import blobfile as bf
import imageio
import numpy as np
import torch as th
import torch.distributed as dist
import torchvision
from PIL import Image
from torch.nn.parallel.distributed import DistributedDataParallel as DDP
from tqdm import tqdm

from guided_diffusion.fp16_util import MixedPrecisionTrainer
from guided_diffusion import dist_util, logger
from guided_diffusion.train_util import (calc_average_loss,
                                         log_rec3d_loss_dict,
                                         find_resume_checkpoint)

from torch.optim import AdamW

from .train_util import TrainLoopBasic, TrainLoop3DRec
import vision_aided_loss
from dnnlib.util import calculate_adaptive_weight


def get_blob_logdir():
    # You can change this to be a separate path to save checkpoints to
    # a blobstore or some external drive.
    return logger.get_dir()


class TrainLoop3DcvD(TrainLoop3DRec):

    def __init__(
            self,
            *,
            rec_model,
            loss_class,
            # diffusion,
            data,
            eval_data,
            batch_size,
            microbatch,
            lr,
            ema_rate,
            log_interval,
            eval_interval,
            save_interval,
            resume_checkpoint,
            use_fp16=False,
            fp16_scale_growth=1e-3,
            # schedule_sampler=None,
            weight_decay=0.0,
            lr_anneal_steps=0,
            iterations=10001,
            load_submodule_name='',
            ignore_resume_opt=False,
            use_amp=False,
            cvD_name='cvD',
            model_name='rec',
            # SR_TRAINING=True,
            SR_TRAINING=False,
            **kwargs):
        super().__init__(rec_model=rec_model,
                         loss_class=loss_class,
                         data=data,
                         eval_data=eval_data,
                         batch_size=batch_size,
                         microbatch=microbatch,
                         lr=lr,
                         ema_rate=ema_rate,
                         log_interval=log_interval,
                         eval_interval=eval_interval,
                         save_interval=save_interval,
                         resume_checkpoint=resume_checkpoint,
                         use_fp16=use_fp16,
                         fp16_scale_growth=fp16_scale_growth,
                         weight_decay=weight_decay,
                         lr_anneal_steps=lr_anneal_steps,
                         iterations=iterations,
                         load_submodule_name=load_submodule_name,
                         ignore_resume_opt=ignore_resume_opt,
                         model_name=model_name,
                         use_amp=use_amp, 
                         cvD_name=cvD_name,
                         **kwargs)

        # self.rec_model = self.ddp_model

        # device = loss_class.device
        device = dist_util.dev()
        # * create vision aided model
        # TODO, load model
        self.nvs_cvD = vision_aided_loss.Discriminator(
            cv_type='clip', loss_type='multilevel_sigmoid_s',
            device=device).to(device)
        self.nvs_cvD.cv_ensemble.requires_grad_(False)  # Freeze feature extractor
        # self.nvs_cvD.train()

        # 
        # SR_TRAINING = False
        cvD_model_params=list(self.nvs_cvD.decoder.parameters())
        self.SR_TRAINING = SR_TRAINING
        # SR_TRAINING = True
        if SR_TRAINING:
            # width, patch_size = self.nvs_cvD.cv_ensemble
            vision_width, vision_patch_size = [self.nvs_cvD.cv_ensemble.models[0].model.conv1.weight.shape[k] for k in [0, -1]]
            self.nvs_cvD.cv_ensemble.models[0].model.conv1 = th.nn.Conv2d(in_channels=6, out_channels=vision_width, kernel_size=vision_patch_size, stride=vision_patch_size, bias=False).to(dist_util.dev())
            self.nvs_cvD.cv_ensemble.models[0].model.conv1.requires_grad_(True)
            cvD_model_params += list(self.nvs_cvD.cv_ensemble.models[0].model.conv1.parameters())

            # change normalization metrics
            self.nvs_cvD.cv_ensemble.models[0].image_mean = self.nvs_cvD.cv_ensemble.models[0].image_mean.repeat(2)
            self.nvs_cvD.cv_ensemble.models[0].image_std = self.nvs_cvD.cv_ensemble.models[0].image_std.repeat(2)

        # logger.log(f'nvs_cvD_model_params: {cvD_model_params}')

        self._load_and_sync_parameters(model=self.nvs_cvD, model_name='cvD')

        self.mp_trainer_cvD = MixedPrecisionTrainer(
            model=self.nvs_cvD,
            use_fp16=self.use_fp16,
            fp16_scale_growth=fp16_scale_growth,
            model_name=cvD_name,
            use_amp=use_amp,
            model_params=cvD_model_params
            )

        # cvD_lr = 4e-5*(lr/1e-5)
        # cvD_lr = 4e-4*(lr/1e-5)
        cvD_lr = 1e-4*(lr/1e-5) * self.loss_class.opt.nvs_D_lr_mul
        # cvD_lr = 1e-5*(lr/1e-5)
        self.opt_cvD = AdamW(
            self.mp_trainer_cvD.master_params,
            lr=cvD_lr,
            betas=(0, 0.999),
            eps=1e-8)  # dlr in biggan cfg
        
        logger.log(f'cpt_cvD lr: {cvD_lr}')

        if self.use_ddp:
            self.ddp_nvs_cvD = DDP(
                self.nvs_cvD,
                device_ids=[dist_util.dev()],
                output_device=dist_util.dev(),
                broadcast_buffers=False,
                bucket_cap_mb=128,
                find_unused_parameters=False,
            )
        else:
            self.ddp_nvs_cvD = self.nvs_cvD

        th.cuda.empty_cache()

    def run_step(self, batch, step='g_step'):
        # self.forward_backward(batch)

        if step == 'g_step_rec':
            self.forward_G_rec(batch)
            took_step_g_rec = self.mp_trainer_rec.optimize(self.opt)

            if took_step_g_rec:
                self._update_ema()  # g_ema

        elif step == 'g_step_nvs':
            self.forward_G_nvs(batch)
            took_step_g_nvs = self.mp_trainer_rec.optimize(self.opt)

            if took_step_g_nvs:
                self._update_ema()  # g_ema

        elif step == 'd_step':
            self.forward_D(batch)
            _ = self.mp_trainer_cvD.optimize(self.opt_cvD)

        self._anneal_lr()
        self.log_step()

    def run_loop(self):
        while (not self.lr_anneal_steps
               or self.step + self.resume_step < self.lr_anneal_steps):

            # let all processes sync up before starting with a new epoch of training
            dist_util.synchronize()

            # batch, cond = next(self.data)
            # if batch is None:
            batch = next(self.data)
            self.run_step(batch, 'g_step_rec')

            batch = next(self.data)
            self.run_step(batch, 'g_step_nvs')

            batch = next(self.data)
            self.run_step(batch, 'd_step')

            if self.step % self.log_interval == 0 and dist_util.get_rank(
            ) == 0:
                out = logger.dumpkvs()
                # * log to tensorboard
                for k, v in out.items():
                    self.writer.add_scalar(f'Loss/{k}', v,
                                           self.step + self.resume_step)

            if self.step % self.eval_interval == 0 and self.step != 0:
                if dist_util.get_rank() == 0:
                    self.eval_loop()
                    # self.eval_novelview_loop()
                    # let all processes sync up before starting with a new epoch of training
                dist_util.synchronize()

            if self.step % self.save_interval == 0:
                self.save()
                self.save(self.mp_trainer_cvD, 'cvD')
                dist_util.synchronize()
                # Run for a finite amount of time in integration tests.
                if os.environ.get("DIFFUSION_TRAINING_TEST",
                                  "") and self.step > 0:
                    return

            self.step += 1

            if self.step > self.iterations:
                logger.log('reached maximum iterations, exiting')

                # Save the last checkpoint if it wasn't already saved.
                if (self.step - 1) % self.save_interval != 0:
                    self.save()
                    self.save(self.mp_trainer_cvD, 'cvD')

                exit()

        # Save the last checkpoint if it wasn't already saved.
        if (self.step - 1) % self.save_interval != 0:
            self.save()
            self.save(self.mp_trainer_cvD, 'cvD')

    # def forward_backward(self, batch, *args, **kwargs):
    # blur_sigma = max(1 - cur_nimg / (self.blur_fade_kimg * 1e3), 0) * self.blur_init_sigma if self.blur_fade_kimg > 0 else 0

    def run_D_Diter(self, real, fake, D=None):
        # Dmain: Minimize logits for generated images and maximize logits for real images.
        if D is None:
            D = self.ddp_nvs_cvD

        lossD = D(real, for_real=True).mean() + D(
            fake, for_real=False).mean()
        return lossD

    def forward_D(self, batch):  # update D
        self.mp_trainer_cvD.zero_grad()
        self.ddp_nvs_cvD.requires_grad_(True)
        self.rec_model.requires_grad_(False)

        batch_size = batch['img'].shape[0]

        # * sample a new batch for D training
        for i in range(0, batch_size, self.microbatch):
            micro = {
                k: v[i:i + self.microbatch].to(dist_util.dev()).contiguous()
                for k, v in batch.items()
            }

            with th.autocast(device_type='cuda',
                             dtype=th.float16,
                             enabled=self.mp_trainer_cvD.use_amp):

                # pred = self.rec_model(img=micro['img_to_encoder'],
                #                       c=micro['c'])  # pred: (B, 3, 64, 64)

                pred = self.rec_model(
                    img=micro['img_to_encoder'],
                    c=th.cat([
                        micro['c'][1:],
                        micro['c'][:1],  # half novel view, half orig view
                    ]))

                real_logits_cv = self.run_D_Diter(
                    real=micro['img_to_encoder'],
                    fake=pred['image_raw'])  # TODO, add SR for FFHQ

            log_rec3d_loss_dict({'vision_aided_loss/D': real_logits_cv})

            self.mp_trainer_cvD.backward(real_logits_cv)

    def forward_G_rec(self, batch):  # update G

        self.mp_trainer_rec.zero_grad()
        self.rec_model.requires_grad_(True)
        self.ddp_nvs_cvD.requires_grad_(False)

        batch_size = batch['img'].shape[0]

        for i in range(0, batch_size, self.microbatch):
            micro = {
                k: v[i:i + self.microbatch].to(dist_util.dev()).contiguous()
                for k, v in batch.items()
            }

            last_batch = (i + self.microbatch) >= batch_size

            # VQ3D novel view d loss
            # duplicated_for_nvs = th.cat([
            #     micro['img_to_encoder'][:batch_size - 2],
            #     micro['img_to_encoder'][:2]
            # ], 0)

            with th.autocast(device_type='cuda',
                             dtype=th.float16,
                             enabled=self.mp_trainer_rec.use_amp):

                pred = self.rec_model(
                    img=micro['img_to_encoder'], c=micro['c']
                )  # render novel view for first half of the batch for D loss

                target_for_rec = micro
                pred_for_rec = pred

                # pred_for_rec = {
                #     k: v[:batch_size - 2] if v is not None else None
                #     for k, v in pred.items()
                # }
                # target_for_rec = {
                #     k: v[:batch_size - 2] if v is not None else None
                #     for k, v in target.items()
                # }

                if last_batch or not self.use_ddp:
                    loss, loss_dict = self.loss_class(pred_for_rec,
                                                      target_for_rec,
                                                      test_mode=False)
                else:
                    with self.rec_model.no_sync():  # type: ignore
                        loss, loss_dict = self.loss_class(pred_for_rec,
                                                          target_for_rec,
                                                          test_mode=False)

                # add cvD supervision
                vision_aided_loss = self.ddp_nvs_cvD(
                    pred_for_rec['image_raw'],
                    for_G=True).mean()  # [B, 1] shape

                last_layer = self.rec_model.module.decoder.triplane_decoder.decoder.net[  # type: ignore
                    -1].weight  # type: ignore

                d_weight = calculate_adaptive_weight(
                    loss, vision_aided_loss, last_layer,
                    # disc_weight_max=0.1) * 0.1
                    # disc_weight_max=0.1) * 0.05
                    disc_weight_max=1)
                loss += vision_aided_loss * d_weight

                loss_dict.update({
                    'vision_aided_loss/G_rec': vision_aided_loss,
                    'd_weight': d_weight
                })

                log_rec3d_loss_dict(loss_dict)

            self.mp_trainer_rec.backward(loss)

            # ! move to other places, add tensorboard

            if dist_util.get_rank() == 0 and self.step % 500 == 0:
                with th.no_grad():
                    # gt_vis = th.cat([batch['img'], batch['depth']], dim=-1)

                    gt_depth = micro['depth']
                    if gt_depth.ndim == 3:
                        gt_depth = gt_depth.unsqueeze(1)
                    gt_depth = (gt_depth - gt_depth.min()) / (gt_depth.max() -
                                                              gt_depth.min())
                    # if True:
                    pred_depth = pred['image_depth']
                    pred_depth = (pred_depth - pred_depth.min()) / (
                        pred_depth.max() - pred_depth.min())
                    pred_img = pred['image_raw']
                    gt_img = micro['img']

                    if 'image_sr' in pred:
                        if pred['image_sr'].shape[-1] == 512:
                            pred_img = th.cat(
                                [self.pool_512(pred_img), pred['image_sr']],
                                dim=-1)
                            gt_img = th.cat(
                                [self.pool_512(micro['img']), micro['img_sr']],
                                dim=-1)
                            pred_depth = self.pool_512(pred_depth)
                            gt_depth = self.pool_512(gt_depth)

                        elif pred['image_sr'].shape[-1] == 256:
                            pred_img = th.cat(
                                [self.pool_256(pred_img), pred['image_sr']],
                                dim=-1)
                            gt_img = th.cat(
                                [self.pool_256(micro['img']), micro['img_sr']],
                                dim=-1)
                            pred_depth = self.pool_256(pred_depth)
                            gt_depth = self.pool_256(gt_depth)

                        else:
                            pred_img = th.cat(
                                [self.pool_128(pred_img), pred['image_sr']],
                                dim=-1)
                            gt_img = th.cat(
                                [self.pool_128(micro['img']), micro['img_sr']],
                                dim=-1)
                            gt_depth = self.pool_128(gt_depth)
                            pred_depth = self.pool_128(pred_depth)

                    gt_vis = th.cat(
                        [gt_img, gt_depth.repeat_interleave(3, dim=1)],
                        dim=-1)  # TODO, fail to load depth. range [0, 1]

                    pred_vis = th.cat(
                        [pred_img,
                         pred_depth.repeat_interleave(3, dim=1)],
                        dim=-1)  # B, 3, H, W

                    vis = th.cat([gt_vis, pred_vis], dim=-2)[0].permute(
                        1, 2, 0).cpu()  # ! pred in range[-1, 1]
                    # vis_grid = torchvision.utils.make_grid(vis) # HWC
                    vis = vis.numpy() * 127.5 + 127.5
                    vis = vis.clip(0, 255).astype(np.uint8)
                    Image.fromarray(vis).save(
                        f'{logger.get_dir()}/{self.step+self.resume_step}_rec.jpg'
                    )
                    logger.log(
                        'log vis to: ',
                        f'{logger.get_dir()}/{self.step+self.resume_step}_rec.jpg'
                    )

    def forward_G_nvs(self, batch):  # update G

        self.mp_trainer_rec.zero_grad()
        self.rec_model.requires_grad_(True)
        self.ddp_nvs_cvD.requires_grad_(False)

        batch_size = batch['img'].shape[0]

        for i in range(0, batch_size, self.microbatch):
            micro = {
                k: v[i:i + self.microbatch].to(dist_util.dev()).contiguous()
                for k, v in batch.items()
            }

            # last_batch = (i + self.microbatch) >= batch_size

            # VQ3D novel view d loss
            # duplicated_for_nvs = th.cat([
            #     micro['img_to_encoder'][batch_size // 2:],
            #     micro['img_to_encoder'][:batch_size // 2]
            # ], 0)

            with th.autocast(device_type='cuda',
                             dtype=th.float16,
                             enabled=self.mp_trainer_rec.use_amp):

                pred = self.rec_model(
                    # img=duplicated_for_nvs, c=micro['c']
                    img=micro['img_to_encoder'],
                    c=th.cat([
                        micro['c'][1:],
                        micro['c'][:1],
                    ])
                )  # render novel view for first half of the batch for D loss

                # add cvD supervision
                vision_aided_loss = self.ddp_nvs_cvD(
                    pred['image_raw'], for_G=True).mean()  # [B, 1] shape

                # loss = vision_aided_loss * 0.01
                # loss = vision_aided_loss * 0.005
                # loss = vision_aided_loss * 0.1
                loss = vision_aided_loss * 0.01

                log_rec3d_loss_dict({
                    'vision_aided_loss/G_nvs':
                    vision_aided_loss,
                })

            self.mp_trainer_rec.backward(loss)

            # ! move to other places, add tensorboard

            if dist_util.get_rank() == 0 and self.step % 500 == 0:
                with th.no_grad():
                    # gt_vis = th.cat([batch['img'], batch['depth']], dim=-1)

                    gt_depth = micro['depth']
                    if gt_depth.ndim == 3:
                        gt_depth = gt_depth.unsqueeze(1)
                    gt_depth = (gt_depth - gt_depth.min()) / (gt_depth.max() -
                                                              gt_depth.min())
                    # if True:
                    pred_depth = pred['image_depth']
                    pred_depth = (pred_depth - pred_depth.min()) / (
                        pred_depth.max() - pred_depth.min())
                    pred_img = pred['image_raw']
                    gt_img = micro['img']

                    if 'image_sr' in pred:
                        pred_img = th.cat(
                            [self.pool_512(pred_img), pred['image_sr']],
                            dim=-1)
                        gt_img = th.cat(
                            [self.pool_512(micro['img']), micro['img_sr']],
                            dim=-1)
                        pred_depth = self.pool_512(pred_depth)
                        gt_depth = self.pool_512(gt_depth)

                    gt_vis = th.cat(
                        [gt_img, gt_depth.repeat_interleave(3, dim=1)],
                        dim=-1)  # TODO, fail to load depth. range [0, 1]

                    pred_vis = th.cat(
                        [pred_img,
                         pred_depth.repeat_interleave(3, dim=1)],
                        dim=-1)  # B, 3, H, W

                    # vis = th.cat([gt_vis, pred_vis], dim=-2)[0].permute(
                    #     1, 2, 0).cpu()  # ! pred in range[-1, 1]
                    vis = th.cat([gt_vis, pred_vis], dim=-2)

                    vis = torchvision.utils.make_grid(
                        vis,
                        normalize=True,
                        scale_each=True,
                        value_range=(-1, 1)).cpu().permute(1, 2, 0)  # H W 3
                    vis = vis.numpy() * 255
                    vis = vis.clip(0, 255).astype(np.uint8)

                    # logger.log(vis.shape)

                    Image.fromarray(vis).save(
                        f'{logger.get_dir()}/{self.step+self.resume_step}_nvs.jpg'
                    )
                    logger.log(
                        'log vis to: ',
                        f'{logger.get_dir()}/{self.step+self.resume_step}_nvs.jpg'
                    )

    def save(self, mp_trainer=None, model_name='rec'):
        if mp_trainer is None:
            mp_trainer = self.mp_trainer_rec

        def save_checkpoint(rate, params):
            state_dict = mp_trainer.master_params_to_state_dict(params)
            if dist_util.get_rank() == 0:
                logger.log(f"saving model {model_name} {rate}...")
                if not rate:
                    filename = f"model_{model_name}{(self.step+self.resume_step):07d}.pt"
                else:
                    filename = f"ema_{model_name}_{rate}_{(self.step+self.resume_step):07d}.pt"
                with bf.BlobFile(bf.join(get_blob_logdir(), filename),
                                 "wb") as f:
                    th.save(state_dict, f)

        save_checkpoint(0, mp_trainer.master_params)

        if model_name == 'ddpm':
            for rate, params in zip(self.ema_rate, self.ema_params):
                save_checkpoint(rate, params)

        dist.barrier()

    def _load_and_sync_parameters(self, model=None, model_name='rec'):
        resume_checkpoint, self.resume_step = find_resume_checkpoint(
            self.resume_checkpoint, model_name) or self.resume_checkpoint

        if model is None:
            model = self.rec_model  # default model in the parent class

        logger.log(resume_checkpoint)

        if resume_checkpoint and Path(resume_checkpoint).exists():
            if dist_util.get_rank() == 0:

                logger.log(
                    f"loading model from checkpoint: {resume_checkpoint}...")
                map_location = {
                    'cuda:%d' % 0: 'cuda:%d' % dist_util.get_rank()
                }  # configure map_location properly

                logger.log(f'mark {model_name} loading ', )
                resume_state_dict = dist_util.load_state_dict(
                    resume_checkpoint, map_location=map_location)
                logger.log(f'mark {model_name} loading finished', )

                model_state_dict = model.state_dict()

                for k, v in resume_state_dict.items():
                    
                    if k in model_state_dict.keys() and v.size(
                    ) == model_state_dict[k].size():
                        model_state_dict[k] = v

                    # elif 'IN' in k and model_name == 'rec' and getattr(model.decoder, 'decomposed_IN', False):
                    #     model_state_dict[k.replace('IN', 'superresolution.norm.norm_layer')] = v # decomposed IN
                    elif 'attn.wk' in k or 'attn.wv' in k: # old qkv
                        logger.log('ignore ', k)

                    elif 'decoder.vit_decoder.blocks' in k:
                        # st()
                        # load from 2D ViT pre-trained into 3D ViT blocks. 
                        assert len(model.decoder.vit_decoder.blocks[0].vit_blks) == 2 # assert depth=2 here.
                        fusion_ca_depth = len(model.decoder.vit_decoder.blocks[0].vit_blks)
                        vit_subblk_index = int(k.split('.')[3])
                        vit_blk_keyname = ('.').join(k.split('.')[4:])
                        fusion_blk_index = vit_subblk_index // fusion_ca_depth
                        fusion_blk_subindex = vit_subblk_index % fusion_ca_depth
                        model_state_dict[f'decoder.vit_decoder.blocks.{fusion_blk_index}.vit_blks.{fusion_blk_subindex}.{vit_blk_keyname}'] = v
                        # logger.log('load 2D ViT weight: {}'.format(f'decoder.vit_decoder.blocks.{fusion_blk_index}.vit_blks.{fusion_blk_subindex}.{vit_blk_keyname}'))

                    elif 'IN' in k:
                        logger.log('ignore ', k)

                    elif 'quant_conv' in k:
                        logger.log('ignore ', k)

                    else:
                        logger.log('!!!! ignore key: ', k, ": ", v.size(),)
                        if k in model_state_dict:
                            logger.log('shape in model: ', model_state_dict[k].size())
                        else:
                            logger.log(k, 'not in model_state_dict')

                model.load_state_dict(model_state_dict, strict=True)
                del model_state_dict

        if dist_util.get_world_size() > 1:
            dist_util.sync_params(model.parameters())
            logger.log(f'synced {model_name} params')