File size: 36,445 Bytes
11e6f7b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
EPS = 1e-7

import kornia
from typing import Dict, Iterator, List, Optional, Tuple, Union
import torchvision
from guided_diffusion import dist_util, logger
from pdb import set_trace as st
from torch.nn import functional as F
import numpy as np
import torch
import torch.nn as nn
import lpips

from . import *

from .sdfstudio_losses import ScaleAndShiftInvariantLoss
from ldm.util import default, instantiate_from_config
from .vqperceptual import hinge_d_loss, vanilla_d_loss
from torch.autograd import Variable

from math import exp

def gaussian(window_size, sigma):
    gauss = torch.Tensor([exp(-(x - window_size // 2) ** 2 / float(2 * sigma ** 2)) for x in range(window_size)])
    return gauss / gauss.sum()


def create_window(window_size, channel):
    _1D_window = gaussian(window_size, 1.5).unsqueeze(1)
    _2D_window = _1D_window.mm(_1D_window.t()).float().unsqueeze(0).unsqueeze(0)
    window = Variable(_2D_window.expand(channel, 1, window_size, window_size).contiguous())
    return window


def _ssim(img1, img2, window, window_size, channel, size_average=True):
    mu1 = F.conv2d(img1, window, padding=window_size // 2, groups=channel)
    mu2 = F.conv2d(img2, window, padding=window_size // 2, groups=channel)

    mu1_sq = mu1.pow(2)
    mu2_sq = mu2.pow(2)
    mu1_mu2 = mu1 * mu2

    sigma1_sq = F.conv2d(img1 * img1, window, padding=window_size // 2, groups=channel) - mu1_sq
    sigma2_sq = F.conv2d(img2 * img2, window, padding=window_size // 2, groups=channel) - mu2_sq
    sigma12 = F.conv2d(img1 * img2, window, padding=window_size // 2, groups=channel) - mu1_mu2

    C1 = 0.01 ** 2
    C2 = 0.03 ** 2

    ssim_map = ((2 * mu1_mu2 + C1) * (2 * sigma12 + C2)) / ((mu1_sq + mu2_sq + C1) * (sigma1_sq + sigma2_sq + C2))

    if size_average:
        return ssim_map.mean()
    else:
        return ssim_map.mean(1).mean(1).mean(1)



def weights_init(m):
    classname = m.__class__.__name__
    if classname.find("Conv") != -1:
        nn.init.normal_(m.weight.data, 0.0, 0.02)
    elif classname.find("BatchNorm") != -1:
        nn.init.normal_(m.weight.data, 1.0, 0.02)
        nn.init.constant_(m.bias.data, 0)


# Main loss function used for ZoeDepth. Copy/paste from AdaBins repo (https://github.com/shariqfarooq123/AdaBins/blob/0952d91e9e762be310bb4cd055cbfe2448c0ce20/loss.py#L7)
def extract_key(prediction, key):
    if isinstance(prediction, dict):
        return prediction[key]
    return prediction


class SILogLoss(nn.Module):
    """SILog loss (pixel-wise)"""

    def __init__(self, beta=0.15):
        super(SILogLoss, self).__init__()
        self.name = 'SILog'
        self.beta = beta

    def forward(self,
                input,
                target,
                mask=None,
                interpolate=True,
                return_interpolated=False):
        # input = extract_key(input, KEY_OUTPUT)
        if input.shape[-1] != target.shape[-1] and interpolate:
            input = nn.functional.interpolate(input,
                                              target.shape[-2:],
                                              mode='bilinear',
                                              align_corners=True)
            intr_input = input
        else:
            intr_input = input

        if target.ndim == 3:
            target = target.unsqueeze(1)

        if mask is not None:
            if mask.ndim == 3:
                mask = mask.unsqueeze(1)

            input = input[mask]
            target = target[mask]

        # with torch.amp.autocast(enabled=False):  # amp causes NaNs in this loss function

        alpha = 1e-7
        g = torch.log(input + alpha) - torch.log(target + alpha)

        # n, c, h, w = g.shape
        # norm = 1/(h*w)
        # Dg = norm * torch.sum(g**2) - (0.85/(norm**2)) * (torch.sum(g))**2

        Dg = torch.var(g) + self.beta * torch.pow(torch.mean(g), 2)

        loss = 10 * torch.sqrt(Dg)

        if torch.isnan(loss):
            print("Nan SILog loss")
            print("input:", input.shape)
            print("target:", target.shape)
            print("G", torch.sum(torch.isnan(g)))
            print("Input min max", torch.min(input), torch.max(input))
            print("Target min max", torch.min(target), torch.max(target))
            print("Dg", torch.isnan(Dg))
            print("loss", torch.isnan(loss))

        if not return_interpolated:
            return loss

        return loss, intr_input


def get_outnorm(x: torch.Tensor, out_norm: str = '') -> torch.Tensor:
    """ Common function to get a loss normalization value. Can
        normalize by either the batch size ('b'), the number of
        channels ('c'), the image size ('i') or combinations
        ('bi', 'bci', etc)
    """
    # b, c, h, w = x.size()
    img_shape = x.shape

    if not out_norm:
        return 1

    norm = 1
    if 'b' in out_norm:
        # normalize by batch size
        # norm /= b
        norm /= img_shape[0]
    if 'c' in out_norm:
        # normalize by the number of channels
        # norm /= c
        norm /= img_shape[-3]
    if 'i' in out_norm:
        # normalize by image/map size
        # norm /= h*w
        norm /= img_shape[-1] * img_shape[-2]

    return norm


class CharbonnierLoss(torch.nn.Module):
    """Charbonnier Loss (L1)"""

    def __init__(self, eps=1e-6, out_norm: str = 'bci'):
        super(CharbonnierLoss, self).__init__()
        self.eps = eps
        self.out_norm = out_norm

    def forward(self, x, y):
        norm = get_outnorm(x, self.out_norm)
        loss = torch.sum(torch.sqrt((x - y).pow(2) + self.eps**2))
        return loss * norm


def feature_vae_loss(feature):
    # kld = torch.mean(-0.5 * torch.sum(1 + log_var - mu ** 2 - log_var.exp(), dim = 1), dim = 0)

    # feature dim: B C H W
    mu = feature.mean(1)
    var = feature.var(1)
    log_var = torch.log(var)
    kld = torch.mean(-0.5 * torch.sum(1 + log_var - mu**2 - var, dim=1), dim=0)
    return kld


def kl_coeff(step, total_step, constant_step, min_kl_coeff, max_kl_coeff):
    # return max(min(max_kl_coeff * (step - constant_step) / total_step, max_kl_coeff), min_kl_coeff)
    kl_lambda = max(
        min(
            min_kl_coeff + (max_kl_coeff - min_kl_coeff) *
            (step - constant_step) / total_step, max_kl_coeff), min_kl_coeff)
    return torch.tensor(kl_lambda, device=dist_util.dev())


def depth_smoothness_loss(alpha_pred, depth_pred):
    # from PesonNeRF paper.
    # all Tensor shape B 1 H W
    geom_loss = (
        alpha_pred[..., :-1] * alpha_pred[..., 1:] * (
            depth_pred[..., :-1] - depth_pred[..., 1:]  # W dim
        ).square()).mean()  # mean of ([8, 1, 64, 63])

    geom_loss += (alpha_pred[..., :-1, :] * alpha_pred[..., 1:, :] *
                  (depth_pred[..., :-1, :] - depth_pred[..., 1:, :]).square()
                  ).mean()  # H dim, ([8, 1, 63, 64])

    return geom_loss


# https://github.com/elliottwu/unsup3d/blob/master/unsup3d/networks.py#L140
class LPIPSLoss(torch.nn.Module):

    def __init__(
        self,
        loss_weight=1.0,
        use_input_norm=True,
        range_norm=True,
        # n1p1_input=True,
    ):
        super(LPIPSLoss, self).__init__()
        self.perceptual = lpips.LPIPS(net="alex", spatial=False).eval()
        self.loss_weight = loss_weight
        self.use_input_norm = use_input_norm
        self.range_norm = range_norm

        # if self.use_input_norm:
        #     # the mean is for image with range [0, 1]
        #     self.register_buffer(
        #         'mean',
        #         torch.Tensor([0.485, 0.456, 0.406]).view(1, 3, 1, 1))
        #     # the std is for image with range [0, 1]
        #     self.register_buffer(
        #         'std',
        #         torch.Tensor([0.229, 0.224, 0.225]).view(1, 3, 1, 1))

    def forward(self, pred, target, conf_sigma_percl=None):
        # st()
        lpips_loss = self.perceptual(target.contiguous(), pred.contiguous())
        return self.loss_weight * lpips_loss.mean()


# mask-aware perceptual loss
class PerceptualLoss(nn.Module):

    def __init__(self, requires_grad=False):
        super(PerceptualLoss, self).__init__()
        mean_rgb = torch.FloatTensor([0.485, 0.456, 0.406])
        std_rgb = torch.FloatTensor([0.229, 0.224, 0.225])
        self.register_buffer('mean_rgb', mean_rgb)
        self.register_buffer('std_rgb', std_rgb)

        vgg_pretrained_features = torchvision.models.vgg16(
            pretrained=True).features
        self.slice1 = nn.Sequential()
        self.slice2 = nn.Sequential()
        self.slice3 = nn.Sequential()
        self.slice4 = nn.Sequential()
        for x in range(4):
            self.slice1.add_module(str(x), vgg_pretrained_features[x])
        for x in range(4, 9):
            self.slice2.add_module(str(x), vgg_pretrained_features[x])
        for x in range(9, 16):
            self.slice3.add_module(str(x), vgg_pretrained_features[x])
        for x in range(16, 23):
            self.slice4.add_module(str(x), vgg_pretrained_features[x])
        if not requires_grad:
            for param in self.parameters():
                param.requires_grad = False

    def normalize(self, x):
        out = x / 2 + 0.5
        out = (out - self.mean_rgb.view(1, 3, 1, 1)) / self.std_rgb.view(
            1, 3, 1, 1)
        return out

    def __call__(self, im1, im2, mask=None, conf_sigma=None):
        im = torch.cat([im1, im2], 0)
        im = self.normalize(im)  # normalize input

        ## compute features
        feats = []
        f = self.slice1(im)
        feats += [torch.chunk(f, 2, dim=0)]
        f = self.slice2(f)
        feats += [torch.chunk(f, 2, dim=0)]
        f = self.slice3(f)
        feats += [torch.chunk(f, 2, dim=0)]
        f = self.slice4(f)
        feats += [torch.chunk(f, 2, dim=0)]

        losses = []
        for f1, f2 in feats[2:3]:  # use relu3_3 features only
            loss = (f1 - f2)**2
            if conf_sigma is not None:
                loss = loss / (2 * conf_sigma**2 + EPS) + (conf_sigma +
                                                           EPS).log()
            if mask is not None:
                b, c, h, w = loss.shape
                _, _, hm, wm = mask.shape
                sh, sw = hm // h, wm // w
                mask0 = nn.functional.avg_pool2d(mask,
                                                 kernel_size=(sh, sw),
                                                 stride=(sh,
                                                         sw)).expand_as(loss)
                loss = (loss * mask0).sum() / mask0.sum()
            else:
                loss = loss.mean()
            losses += [loss]
        return sum(losses)


# add confidence support, unsup3d version
def photometric_loss_laplace(im1, im2, mask=None, conf_sigma=None):
    loss = (im1 - im2).abs()
    # loss = (im1 - im2).square()
    if conf_sigma is not None:
        loss = loss * 2**0.5 / (conf_sigma + EPS) + (conf_sigma + EPS).log()

    if mask is not None:
        mask = mask.expand_as(loss)
        loss = (loss * mask).sum() / mask.sum()

    else:
        loss = loss.mean()

    return loss


# gaussian likelihood version, What Uncertainties Do We Need in Bayesian Deep Learning for Computer Vision?
# also used in the mask-aware vgg loss
def photometric_loss(im1, im2, mask=None, conf_sigma=None):
    # loss = torch.nn.functional.mse_loss(im1, im2, reduce='none')
    loss = (im1 - im2).square()

    if conf_sigma is not None:
        loss = loss / (2 * conf_sigma**2 + EPS) + (conf_sigma + EPS).log()

    if mask is not None:
        mask = mask.expand_as(loss)
        loss = (loss * mask).sum() / mask.sum()

    else:
        loss = loss.mean()

    return loss


class E3DGELossClass(torch.nn.Module):

    def __init__(self, device, opt) -> None:
        super().__init__()

        self.opt = opt
        self.device = device
        self.criterionImg = {
            'mse': torch.nn.MSELoss(),
            'l1': torch.nn.L1Loss(),
            'charbonnier': CharbonnierLoss(),
        }[opt.color_criterion]

        self.criterion_latent = {
            'mse': torch.nn.MSELoss(),
            'l1': torch.nn.L1Loss(),
            'vae': feature_vae_loss
        }[opt.latent_criterion]

        # self.criterionLPIPS = LPIPS(net_type='alex', device=device).eval()
        if opt.lpips_lambda > 0:
            self.criterionLPIPS = LPIPSLoss(loss_weight=opt.lpips_lambda)
        # self.criterionLPIPS = torch.nn.MSELoss()

        if opt.id_lambda > 0:
            self.criterionID = IDLoss(device=device).eval()
        self.id_loss_pool = torch.nn.AdaptiveAvgPool2d((256, 256))

        # define 3d rec loss, for occupancy
        # self.criterion3d_rec = torch.nn.SmoothL1Loss(reduction='none')
        # self.criterion_alpha = torch.nn.SmoothL1Loss()

        # self.criterion3d_rec = torch.nn.MSELoss(reduction='none')
        self.criterion_alpha = torch.nn.L1Loss()

        if self.opt.depth_lambda > 0:
            self.criterion3d_rec = ScaleAndShiftInvariantLoss(alpha=0.5,
                                                              scales=1)
        else:
            self.criterion3d_rec = torch.nn.SmoothL1Loss(reduction='none')

        #     self.silog_loss = SILogLoss()

        logger.log('init loss class finished', )

    def calc_scale_invariant_depth_loss(self, pred_depth: torch.Tensor,
                                        gt_depth: torch.Tensor,
                                        gt_depth_mask: torch.Tensor):
        """apply 3d shape reconstruction supervision. Basically supervise the depth with L1 loss
        """

        shape_loss_dict = {}
        assert gt_depth_mask is not None
        shape_loss = self.criterion3d_rec(pred_depth, gt_depth, gt_depth_mask)

        if shape_loss > 0.2:  # hinge loss, avoid ood gradient
            shape_loss = torch.zeros_like(shape_loss)
        else:
            shape_loss *= self.opt.depth_lambda

        shape_loss_dict['loss_depth'] = shape_loss
        shape_loss_dict['depth_fgratio'] = gt_depth_mask.mean()

        # return l_si, shape_loss_dict
        return shape_loss, shape_loss_dict

    def calc_depth_loss(self, pred_depth: torch.Tensor, gt_depth: torch.Tensor,
                        gt_depth_mask: torch.Tensor):
        """apply 3d shape reconstruction supervision. Basically supervise the depth with L1 loss
        """

        shape_loss_dict = {}
        shape_loss = self.criterion3d_rec(pred_depth, gt_depth)
        if gt_depth_mask is not None:
            # pred_depth *= gt_depth_mask
            # gt_depth *= gt_depth_mask
            shape_loss *= gt_depth_mask
            shape_loss = shape_loss.sum() / gt_depth_mask.sum()
        # else:
        #     shape_loss /= pred_depth.numel()
        # l_si = self.silog_loss(pred_depth, gt_depth, mask=None, interpolate=True, return_interpolated=False)

        # l_si *= self.opt.depth_lambda
        # shape_loss_dict['loss_depth'] = l_si
        shape_loss_dict['loss_depth'] = shape_loss.clamp(
            min=0, max=0.1) * self.opt.depth_lambda

        # return l_si, shape_loss_dict
        return shape_loss, shape_loss_dict

    @torch.autocast(device_type='cuda', dtype=torch.float16, enabled=False)
    def calc_alpha_loss(self, pred_alpha, gt_depth_mask):
        # return self.criterionImg(alpha, gt_depth_mask.float())

        if gt_depth_mask.ndim == 3:
            gt_depth_mask = gt_depth_mask.unsqueeze(1)

        if gt_depth_mask.shape[1] == 3:
            gt_depth_mask = gt_depth_mask[:, 0:1, ...]  # B 1 H W

        assert pred_alpha.shape == gt_depth_mask.shape

        alpha_loss = self.criterion_alpha(pred_alpha, gt_depth_mask)

        return alpha_loss

    @torch.autocast(device_type='cuda', dtype=torch.float16, enabled=False)
    def calc_mask_mse_loss(
            self,
            input,
            gt,
            gt_depth_mask,
            #    conf_sigma=None,
            conf_sigma_l1=None,
            #    conf_sigma_percl=None,
            use_fg_ratio=False):
        if gt_depth_mask.ndim == 3:
            gt_depth_mask = gt_depth_mask.unsqueeze(1).repeat_interleave(3, 1)
        else:
            assert gt_depth_mask.shape == input.shape
        gt_depth_mask = gt_depth_mask.float()

        if conf_sigma_l1 is None:
            rec_loss = torch.nn.functional.mse_loss(
                input.float(), gt.float(),
                reduction='none')  # 'sum' already divide by batch size n
        else:
            rec_loss = photometric_loss(
                input, gt, gt_depth_mask, conf_sigma_l1
            )  # ! only cauclate laplace on the foreground, or bg confidence low, large gradient.
            return rec_loss
            # rec_loss = torch.nn.functional.l1_loss( # for laplace loss
            #     input.float(), gt.float(),
            #     reduction='none')  # 'sum' already divide by batch size n
        # gt_depth_mask = torch.ones_like(gt_depth_mask) # ! DEBUGGING

        # if conf_sigma is not None: # from unsup3d, but a L2 version
        #     rec_loss = rec_loss * 2**0.5 / (conf_sigma + EPS) + (conf_sigma +
        #                                                          EPS).log()
        #     return rec_loss.mean()
        # rec_loss = torch.exp(-(rec_loss * 2**0.5 / (conf_sigma + EPS))) * 1/(conf_sigma +
        #                                                      EPS) / (2**0.5)

        fg_size = gt_depth_mask.sum()
        # fg_ratio = fg_size / torch.ones_like(gt_depth_mask).sum() if use_fg_ratio else 1
        fg_loss = rec_loss * gt_depth_mask
        fg_loss = fg_loss.sum() / fg_size  # * fg_ratio

        if self.opt.bg_lamdba > 0:
            bg_loss = rec_loss * (1 - gt_depth_mask)
            bg_loss = bg_loss.sum() / (1 - gt_depth_mask).sum()
            rec_loss = fg_loss + bg_loss * self.opt.bg_lamdba
        else:
            rec_loss = fg_loss

        return rec_loss

    @torch.autocast(device_type='cuda', dtype=torch.float16, enabled=False)
    def calc_2d_rec_loss(
        self,
        input,
        gt,
        depth_fg_mask,
        test_mode=True,
        step=1,
        ignore_lpips=False,
        # conf_sigma=None,
        conf_sigma_l1=None,
        conf_sigma_percl=None,
    ):
        opt = self.opt
        loss_dict = {}

        # logger.log(test_mode)
        # logger.log(input.min(), input.max(), gt.min(), gt.max())
        if test_mode or not opt.fg_mse:
            rec_loss = self.criterionImg(input, gt)
        else:
            rec_loss = self.calc_mask_mse_loss(
                input,
                gt,
                depth_fg_mask,
                conf_sigma_l1=conf_sigma_l1,
            )
            #   conf_sigma_percl=conf_sigma_percl)
            #    conf_sigma)

        # if step == 300:
        #     st()

        if opt.lpips_lambda > 0 and step >= opt.lpips_delay_iter and not ignore_lpips:  # tricky solution to avoid NAN in LPIPS loss

            # with torch.autocast(device_type='cuda',
            #                     dtype=torch.float16,
            #                     enabled=False):
            # if test_mode or not opt.fg_mse:  # no need to calculate background lpips for ease of computation
            lpips_loss = self.criterionLPIPS(
                input,
                gt,
                conf_sigma_percl=conf_sigma_percl,
            )
            # else:  # fg lpips
            #     assert depth_fg_mask.shape == input.shape
            #     lpips_loss = self.criterionLPIPS(
            #         input.contiguous() * depth_fg_mask,
            #         gt.contiguous() * depth_fg_mask).mean()
        else:
            lpips_loss = torch.tensor(0., device=input.device)

        if opt.ssim_lambda > 0:
            loss_ssim = self.ssim_loss(input, gt)  #?
        else:
            loss_ssim = torch.tensor(0., device=input.device)

        loss_psnr = self.psnr((input / 2 + 0.5), (gt / 2 + 0.5), 1.0)

        if opt.id_lambda > 0:
            loss_id = self._calc_loss_id(input, gt)
        else:
            loss_id = torch.tensor(0., device=input.device)

        if opt.l1_lambda > 0:
            loss_l1 = F.l1_loss(input, gt)
        else:
            loss_l1 = torch.tensor(0., device=input.device)

        # loss = rec_loss * opt.l2_lambda + lpips_loss * opt.lpips_lambda + loss_id * opt.id_lambda + loss_ssim * opt.ssim_lambda
        loss = rec_loss * opt.l2_lambda + lpips_loss + loss_id * opt.id_lambda + loss_ssim * opt.ssim_lambda + opt.l1_lambda * loss_l1

        # if return_dict:
        loss_dict['loss_l2'] = rec_loss
        loss_dict['loss_id'] = loss_id
        loss_dict['loss_lpips'] = lpips_loss
        loss_dict['loss'] = loss
        loss_dict['loss_ssim'] = loss_ssim

        # metrics to report, not involved in training
        loss_dict['mae'] = loss_l1
        loss_dict['PSNR'] = loss_psnr
        loss_dict['SSIM'] = 1 - loss_ssim  # Todo
        loss_dict['ID_SIM'] = 1 - loss_id

        return loss, loss_dict

    @torch.autocast(device_type='cuda', dtype=torch.float16, enabled=False)
    def calc_shape_rec_loss(
        self,
        pred_shape: dict,
        gt_shape: dict,
        device,
    ):
        """apply 3d shape reconstruction supervision. Basically supervise the densities with L1 loss

        Args:
            pred_shape (dict): dict contains reconstructed shape information
            gt_shape (dict): dict contains gt shape information
            supervise_sdf (bool, optional): whether supervise sdf rec. Defaults to True.
            supervise_surface_normal (bool, optional): whether supervise surface rec. Defaults to False.

        Returns:
            dict: shape reconstruction loss
        """

        shape_loss_dict = {}
        shape_loss = 0
        # assert supervise_sdf or supervise_surface_normal, 'should at least supervise one types of shape reconstruction'
        # todo, add weights

        if self.opt.shape_uniform_lambda > 0:
            shape_loss_dict['coarse'] = self.criterion3d_rec(
                pred_shape['coarse_densities'].squeeze(),
                gt_shape['coarse_densities'].squeeze())
            shape_loss += shape_loss_dict[
                'coarse'] * self.opt.shape_uniform_lambda

        if self.opt.shape_importance_lambda > 0:
            shape_loss_dict['fine'] = self.criterion3d_rec(
                pred_shape['fine_densities'].squeeze(),  # ? how to supervise
                gt_shape['fine_densities'].squeeze())
            shape_loss += shape_loss_dict[
                'fine'] * self.opt.shape_importance_lambda

        loss_depth = self.criterion_alpha(pred_shape['image_depth'],
                                          gt_shape['image_depth'])

        shape_loss += loss_depth * self.opt.shape_depth_lambda
        shape_loss_dict.update(dict(loss_depth=loss_depth))
        # TODO, add on surface pts supervision ?

        return shape_loss, shape_loss_dict

    @torch.autocast(device_type='cuda', dtype=torch.float16, enabled=False)
    def psnr(self, input, target, max_val):
        return kornia.metrics.psnr(input, target, max_val)

    # @torch.autocast(device_type='cuda', dtype=torch.float16, enabled=False)
    def ssim_loss(self, img1, img2, window_size=11, size_average=True):
        channel = img1.size(-3)
        window = create_window(window_size, channel)

        if img1.is_cuda:
            window = window.cuda(img1.get_device())
        window = window.type_as(img1)

        return 1 - _ssim(img1, img2, window, window_size, channel, size_average)

    @torch.autocast(device_type='cuda', dtype=torch.float16, enabled=False)
    def forward(self,
                pred,
                gt,
                test_mode=True,
                step=1,
                return_fg_mask=False,
                conf_sigma_l1=None,
                conf_sigma_percl=None,
                *args,
                **kwargs):

        with torch.autocast(device_type='cuda',
                            dtype=torch.float16,
                            enabled=False):

            loss = torch.tensor(0., device=self.device)
            loss_dict = {}

            # balance rec_loss with logvar
            # if 'depth_mask' in gt:
            if self.opt.online_mask:
                # https://github.com/elliottwu/unsup3d/blob/dc961410d61684561f19525c2f7e9ee6f4dacb91/unsup3d/model.py#L193
                margin = (self.opt.max_depth - self.opt.min_depth) / 2
                fg_mask = (pred['image_depth']
                           < self.opt.max_depth + margin).float()  # B 1 H W
                fg_mask = fg_mask.repeat_interleave(3, 1).float()
            else:
                if 'depth_mask' in gt:
                    fg_mask = gt['depth_mask'].unsqueeze(1).repeat_interleave(
                        3, 1).float()
                else:
                    fg_mask = None

            loss_2d, loss_2d_dict = self.calc_2d_rec_loss(
                pred['image_raw'],
                gt['img'],
                fg_mask,
                test_mode=test_mode,
                step=step,
                ignore_lpips=False,
                conf_sigma_l1=conf_sigma_l1,
                conf_sigma_percl=conf_sigma_percl)
            #   ignore_lpips=self.opt.fg_mse)

            if self.opt.kl_lambda > 0:
                # assert 'posterior' in pred, 'logvar' in pred
                assert 'posterior' in pred
                kl_loss = pred['posterior'].kl()
                kl_loss = torch.sum(kl_loss) / kl_loss.shape[0]

                if self.opt.kl_anneal:
                    kl_lambda = kl_coeff(
                        step=step,
                        constant_step=5e3,  # 1w steps
                        total_step=25e3,  # 5w steps in total
                        min_kl_coeff=max(1e-9, self.opt.kl_lambda / 1e4),
                        max_kl_coeff=self.opt.kl_lambda)
                    loss_dict['kl_lambda'] = kl_lambda
                else:
                    loss_dict['kl_lambda'] = torch.tensor(
                        self.opt.kl_lambda, device=dist_util.dev())

                # loss_dict['kl_loss'] = kl_loss * kl_lambda
                # loss_dict['kl_loss'] = kl_loss * kl_lambda
                loss_dict['kl_loss'] = kl_loss * loss_dict['kl_lambda']
                loss += loss_dict['kl_loss']

                # nll_loss = loss_2d / torch.exp(pred['logvar']) + pred['logvar'] # nll_loss
                nll_loss = loss_2d
                loss += nll_loss

                loss_dict.update(dict(nll_loss=nll_loss))

                # loss_dict['latent_mu'] = pred['latent_normalized'].mean()
                # loss_dict['latent_max'] = pred['latent_normalized'].max()
                # loss_dict['latent_min'] = pred['latent_normalized'].min()
                # loss_dict['latent_std'] = pred['latent_normalized'].std()
                loss_dict['latent_mu'] = pred[
                    'latent_normalized_2Ddiffusion'].mean()
                loss_dict['latent_max'] = pred[
                    'latent_normalized_2Ddiffusion'].max()
                loss_dict['latent_min'] = pred[
                    'latent_normalized_2Ddiffusion'].min()
                loss_dict['latent_std'] = pred[
                    'latent_normalized_2Ddiffusion'].std()

            else:
                loss += loss_2d

            # if 'image_sr' in pred and pred['image_sr'].shape==gt['img_sr']:
            if 'image_sr' in pred:

                if 'depth_mask_sr' in gt:
                    depth_mask_sr = gt['depth_mask_sr'].unsqueeze(
                        1).repeat_interleave(3, 1).float()
                else:
                    depth_mask_sr = None

                loss_sr, loss_sr_dict = self.calc_2d_rec_loss(
                    pred['image_sr'],
                    gt['img_sr'],
                    depth_fg_mask=depth_mask_sr,
                    # test_mode=test_mode,
                    test_mode=True,
                    step=step)
                loss_sr_lambda = 1
                if step < self.opt.sr_delay_iter:
                    loss_sr_lambda = 0
                loss += loss_sr * loss_sr_lambda
                for k, v in loss_sr_dict.items():
                    loss_dict['sr_' + k] = v * loss_sr_lambda

            if self.opt.depth_lambda > 0:  # TODO, switch to scale-agnostic depth loss
                assert 'depth' in gt
                pred_depth = pred['image_depth']
                if pred_depth.ndim == 4:
                    pred_depth = pred_depth.squeeze(1)  # B H W

                # loss_3d, shape_loss_dict = self.calc_depth_loss(
                #     pred_depth, gt['depth'], fg_mask[:, 0, ...])
                _, shape_loss_dict = self.calc_scale_invariant_depth_loss(
                    pred_depth, gt['depth'], fg_mask[:, 0, ...])
                loss += shape_loss_dict['loss_depth']
                loss_dict.update(shape_loss_dict)

            # if self.opt.latent_lambda > 0:  # make sure the latent suits diffusion learning
            #     latent_mu = pred['latent'].mean()
            #     loss_latent = self.criterion_latent(
            #         latent_mu, torch.zeros_like(
            #             latent_mu))  # only regularize the mean value here
            #     loss_dict['loss_latent'] = loss_latent
            #     loss += loss_latent * self.opt.latent_lambda

            if 'image_mask' in pred:
                pred_alpha = pred['image_mask']  # B 1 H W
            else:
                N, _, H, W = pred['image_depth'].shape
                pred_alpha = pred['weights_samples'].permute(0, 2, 1).reshape(
                    N, 1, H, W)

            if self.opt.alpha_lambda > 0 and 'image_depth' in pred:
                loss_alpha = self.calc_alpha_loss(pred_alpha, fg_mask)
                loss_dict['loss_alpha'] = loss_alpha * self.opt.alpha_lambda
                loss += loss_alpha * self.opt.alpha_lambda

            if self.opt.depth_smoothness_lambda > 0:
                loss_depth_smoothness = depth_smoothness_loss(
                    pred_alpha,
                    pred['image_depth']) * self.opt.depth_smoothness_lambda
                loss_dict['loss_depth_smoothness'] = loss_depth_smoothness
                loss += loss_depth_smoothness

            loss_2d_dict['all_loss'] = loss
            loss_dict.update(loss_2d_dict)

            # if return_fg_mask:
            return loss, loss_dict, fg_mask
            # else:
            #     return loss, loss_dict

    def _calc_loss_id(self, input, gt):
        if input.shape[-1] != 256:
            arcface_input = self.id_loss_pool(input)
            id_loss_gt = self.id_loss_pool(gt)
        else:
            arcface_input = input
            id_loss_gt = gt

        loss_id, _, _ = self.criterionID(arcface_input, id_loss_gt, id_loss_gt)

        return loss_id

    def calc_2d_rec_loss_misaligned(self, input, gt):
        """id loss + vgg loss

        Args:
            input (_type_): _description_
            gt (_type_): _description_
            depth_mask (_type_): _description_
            test_mode (bool, optional): _description_. Defaults to True.
        """
        opt = self.opt
        loss_dict = {}

        if opt.lpips_lambda > 0:
            with torch.autocast(
                    device_type='cuda', dtype=torch.float16,
                    enabled=False):  # close AMP for lpips to avoid nan
                lpips_loss = self.criterionLPIPS(input, gt)
        else:
            lpips_loss = torch.tensor(0., device=input.device)

        if opt.id_lambda > 0:
            loss_id = self._calc_loss_id(input, gt)
        else:
            loss_id = torch.tensor(0., device=input.device)

        loss_dict['loss_id_real'] = loss_id
        loss_dict['loss_lpips_real'] = lpips_loss

        loss = lpips_loss * opt.lpips_lambda + loss_id * opt.id_lambda

        return loss, loss_dict


class E3DGE_with_AdvLoss(E3DGELossClass):
    # adapted from sgm/modules/autoencoding/losses/discriminator_loss.py

    def __init__(
        self,
        device,
        opt,
        discriminator_config: Optional[Dict] = None,
        disc_num_layers: int = 3,
        disc_in_channels: int = 3,
        disc_start: int = 0,
        disc_loss: str = "hinge",
        disc_factor: float = 1.0,
        disc_weight: float = 1.0,
        regularization_weights: Union[None, Dict[str, float]] = None,
        # additional_log_keys: Optional[List[str]] = None,
    ) -> None:
        super().__init__(
            device,
            opt,
        )

        # ! initialize GAN loss
        discriminator_config = default(
            discriminator_config,
            {
                "target":
                "nsr.losses.disc.NLayerDiscriminator",
                "params": {
                    "input_nc": disc_in_channels,
                    "n_layers": disc_num_layers,
                    "use_actnorm": False,
                },
            },
        )

        self.discriminator = instantiate_from_config(
            discriminator_config).apply(weights_init)
        self.discriminator_iter_start = disc_start
        self.disc_loss = hinge_d_loss if disc_loss == "hinge" else vanilla_d_loss
        self.disc_factor = disc_factor
        self.discriminator_weight = disc_weight # self.regularization_weights = default(regularization_weights, {})

        # self.forward_keys = [
        #     "optimizer_idx",
        #     "global_step",
        #     "last_layer",
        #     "split",
        #     "regularization_log",
        # ]

        # self.additional_log_keys = set(default(additional_log_keys, []))
        # self.additional_log_keys.update(set(
        #     self.regularization_weights.keys()))

    def get_trainable_parameters(self) -> Iterator[nn.Parameter]:
        return self.discriminator.parameters()

    def forward(self,
                pred,
                gt,
                behaviour: str,
                test_mode=True,
                step=1,
                return_fg_mask=False,
                conf_sigma_l1=None,
                conf_sigma_percl=None,
                *args,
                **kwargs):

        # now the GAN part
        reconstructions = pred['image_raw']
        inputs = gt['img']

        if behaviour == 'g_step':

            nll_loss, loss_dict, fg_mask = super().forward(
                pred,
                gt,
                test_mode,
                step, 
                return_fg_mask,
                conf_sigma_l1,
                conf_sigma_percl,
                *args,
                **kwargs)

            # generator update
            if step >= self.discriminator_iter_start or not self.training:
                logits_fake = self.discriminator(reconstructions.contiguous())
                g_loss = -torch.mean(logits_fake)
                if self.training:
                    d_weight = torch.tensor(self.discriminator_weight)
                    # d_weight = self.calculate_adaptive_weight(
                    #     nll_loss, g_loss, last_layer=last_layer)
                else:
                    d_weight = torch.tensor(1.0)
            else:
                d_weight = torch.tensor(0.0)
                g_loss = torch.tensor(0.0, requires_grad=True)

            loss = nll_loss + d_weight * self.disc_factor * g_loss

            # TODO
            loss_dict.update({
                f"loss/g": g_loss.detach().mean(),
            })

            # return loss, log
            return loss, loss_dict, fg_mask

        elif behaviour == 'd_step':
            # second pass for discriminator update
            logits_real = self.discriminator(inputs.contiguous().detach())
            logits_fake = self.discriminator(
                reconstructions.contiguous().detach())

            if step >= self.discriminator_iter_start or not self.training:
                d_loss = self.disc_factor * self.disc_loss(
                    logits_real, logits_fake)
            else:
                d_loss = torch.tensor(0.0, requires_grad=True)

            loss_dict = {}

            loss_dict.update({
                "loss/disc": d_loss.clone().detach().mean(),
                "logits/real": logits_real.detach().mean(),
                "logits/fake": logits_fake.detach().mean(),
            })

            return d_loss, loss_dict, None
        else:
            raise NotImplementedError(f"Unknown optimizer behaviour {behaviour}")