File size: 3,850 Bytes
11e6f7b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
import numpy as np
import torch as th
import torch.nn as nn
from torchdiffeq import odeint
from functools import partial
from tqdm import tqdm

class sde:
    """SDE solver class"""
    def __init__(
        self, 
        drift,
        diffusion,
        *,
        t0,
        t1,
        num_steps,
        sampler_type,
    ):
        assert t0 < t1, "SDE sampler has to be in forward time"

        self.num_timesteps = num_steps
        self.t = th.linspace(t0, t1, num_steps)
        self.dt = self.t[1] - self.t[0]
        self.drift = drift
        self.diffusion = diffusion
        self.sampler_type = sampler_type

    def __Euler_Maruyama_step(self, x, mean_x, t, model, **model_kwargs):
        w_cur = th.randn(x.size()).to(x)
        t = th.ones(x.size(0)).to(x) * t
        dw = w_cur * th.sqrt(self.dt)
        drift = self.drift(x, t, model, **model_kwargs)
        diffusion = self.diffusion(x, t)
        mean_x = x + drift * self.dt
        x = mean_x + th.sqrt(2 * diffusion) * dw
        return x, mean_x
    
    def __Heun_step(self, x, _, t, model, **model_kwargs):
        w_cur = th.randn(x.size()).to(x)
        dw = w_cur * th.sqrt(self.dt)
        t_cur = th.ones(x.size(0)).to(x) * t
        diffusion = self.diffusion(x, t_cur)
        xhat = x + th.sqrt(2 * diffusion) * dw
        K1 = self.drift(xhat, t_cur, model, **model_kwargs)
        xp = xhat + self.dt * K1
        K2 = self.drift(xp, t_cur + self.dt, model, **model_kwargs)
        return xhat + 0.5 * self.dt * (K1 + K2), xhat # at last time point we do not perform the heun step

    def __forward_fn(self):
        """TODO: generalize here by adding all private functions ending with steps to it"""
        sampler_dict = {
            "Euler": self.__Euler_Maruyama_step,
            "Heun": self.__Heun_step,
        }

        try:
            sampler = sampler_dict[self.sampler_type]
        except:
            raise NotImplementedError("Smapler type not implemented.")
    
        return sampler

    def sample(self, init, model, **model_kwargs):
        """forward loop of sde"""
        x = init
        mean_x = init 
        samples = []
        sampler = self.__forward_fn()
        for ti in self.t[:-1]:
            with th.no_grad():
                x, mean_x = sampler(x, mean_x, ti, model, **model_kwargs)
                samples.append(x)

        return samples

class ode:
    """ODE solver class"""
    def __init__(
        self,
        drift,
        *,
        t0,
        t1,
        sampler_type,
        num_steps,
        atol,
        rtol,
        # guider,
    ):
        assert t0 < t1, "ODE sampler has to be in forward time"

        self.drift = drift
        self.t = th.linspace(t0, t1, num_steps)
        self.atol = atol
        self.rtol = rtol
        self.sampler_type = sampler_type
        # self.guider = guider

    def sample(self, x, model, **model_kwargs):
        
        device = x[0].device if isinstance(x, tuple) else x.device
        def _fn(t, x):
            t = th.ones(x[0].size(0)).to(device) * t if isinstance(x, tuple) else th.ones(x.size(0)).to(device) * t
            model_output = self.drift(x, t, model, **model_kwargs)
            return model_output

        t = self.t.to(device)
        atol = [self.atol] * len(x) if isinstance(x, tuple) else [self.atol]
        rtol = [self.rtol] * len(x) if isinstance(x, tuple) else [self.rtol]
        samples = odeint(
            _fn,
            x,
            t,
            method=self.sampler_type,
            atol=atol,
            rtol=rtol
        )
        return samples

    # def sample_cfg(self, x, model, **model_kwargs):
    # def sample_cfg(self, x, model, cond, uc):
    #     denoised = self.sample(*self.guider.prepare_inputs(x, cond, uc))
    #     denoised = self.guider(denoised, sigma)
    #     return denoised