Spaces:
Running
on
Zero
Running
on
Zero
File size: 19,025 Bytes
11e6f7b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 |
# SPDX-FileCopyrightText: Copyright (c) 2021-2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: LicenseRef-NvidiaProprietary
#
# NVIDIA CORPORATION, its affiliates and licensors retain all intellectual
# property and proprietary rights in and to this material, related
# documentation and any modifications thereto. Any use, reproduction,
# disclosure or distribution of this material and related documentation
# without an express license agreement from NVIDIA CORPORATION or
# its affiliates is strictly prohibited.
"""Superresolution network architectures from the paper
"Efficient Geometry-aware 3D Generative Adversarial Networks"."""
import torch
from nsr.networks_stylegan2 import Conv2dLayer, SynthesisLayer, ToRGBLayer
from utils.torch_utils.ops import upfirdn2d
from utils.torch_utils import persistence
from utils.torch_utils import misc
from nsr.networks_stylegan2 import SynthesisBlock
import numpy as np
from pdb import set_trace as st
@persistence.persistent_class
class SynthesisBlockNoUp(torch.nn.Module):
def __init__(
self,
in_channels, # Number of input channels, 0 = first block.
out_channels, # Number of output channels.
w_dim, # Intermediate latent (W) dimensionality.
resolution, # Resolution of this block.
img_channels, # Number of output color channels.
is_last, # Is this the last block?
architecture='skip', # Architecture: 'orig', 'skip', 'resnet'.
resample_filter=[
1, 3, 3, 1
], # Low-pass filter to apply when resampling activations.
conv_clamp=256, # Clamp the output of convolution layers to +-X, None = disable clamping.
use_fp16=False, # Use FP16 for this block?
fp16_channels_last=False, # Use channels-last memory format with FP16?
fused_modconv_default=True, # Default value of fused_modconv. 'inference_only' = True for inference, False for training.
**layer_kwargs, # Arguments for SynthesisLayer.
):
assert architecture in ['orig', 'skip', 'resnet']
super().__init__()
self.in_channels = in_channels
self.w_dim = w_dim
self.resolution = resolution
self.img_channels = img_channels
self.is_last = is_last
self.architecture = architecture
self.use_fp16 = use_fp16
self.channels_last = (use_fp16 and fp16_channels_last)
self.fused_modconv_default = fused_modconv_default
self.register_buffer('resample_filter',
upfirdn2d.setup_filter(resample_filter))
self.num_conv = 0
self.num_torgb = 0
if in_channels == 0:
self.const = torch.nn.Parameter(
torch.randn([out_channels, resolution, resolution]))
if in_channels != 0:
self.conv0 = SynthesisLayer(in_channels,
out_channels,
w_dim=w_dim,
resolution=resolution,
conv_clamp=conv_clamp,
channels_last=self.channels_last,
**layer_kwargs)
self.num_conv += 1
self.conv1 = SynthesisLayer(out_channels,
out_channels,
w_dim=w_dim,
resolution=resolution,
conv_clamp=conv_clamp,
channels_last=self.channels_last,
**layer_kwargs)
self.num_conv += 1
if is_last or architecture == 'skip':
self.torgb = ToRGBLayer(out_channels,
img_channels,
w_dim=w_dim,
conv_clamp=conv_clamp,
channels_last=self.channels_last)
self.num_torgb += 1
if in_channels != 0 and architecture == 'resnet':
self.skip = Conv2dLayer(in_channels,
out_channels,
kernel_size=1,
bias=False,
up=2,
resample_filter=resample_filter,
channels_last=self.channels_last)
def forward(self,
x,
img,
ws,
force_fp32=False,
fused_modconv=None,
update_emas=False,
**layer_kwargs):
_ = update_emas # unused
misc.assert_shape(ws,
[None, self.num_conv + self.num_torgb, self.w_dim])
w_iter = iter(ws.unbind(dim=1))
if ws.device.type != 'cuda':
force_fp32 = True
dtype = torch.float16 if self.use_fp16 and not force_fp32 else torch.float32
memory_format = torch.channels_last if self.channels_last and not force_fp32 else torch.contiguous_format
if fused_modconv is None:
fused_modconv = self.fused_modconv_default
if fused_modconv == 'inference_only':
fused_modconv = (not self.training)
# Input.
if self.in_channels == 0:
x = self.const.to(dtype=dtype, memory_format=memory_format)
x = x.unsqueeze(0).repeat([ws.shape[0], 1, 1, 1])
else:
misc.assert_shape(
x, [None, self.in_channels, self.resolution, self.resolution])
x = x.to(dtype=dtype, memory_format=memory_format)
# Main layers.
if self.in_channels == 0:
x = self.conv1(x,
next(w_iter),
fused_modconv=fused_modconv,
**layer_kwargs)
elif self.architecture == 'resnet':
y = self.skip(x, gain=np.sqrt(0.5))
x = self.conv0(x,
next(w_iter),
fused_modconv=fused_modconv,
**layer_kwargs)
x = self.conv1(x,
next(w_iter),
fused_modconv=fused_modconv,
gain=np.sqrt(0.5),
**layer_kwargs)
x = y.add_(x)
else:
x = self.conv0(x,
next(w_iter),
fused_modconv=fused_modconv,
**layer_kwargs)
x = self.conv1(x,
next(w_iter),
fused_modconv=fused_modconv,
**layer_kwargs)
# ToRGB.
# if img is not None:
# misc.assert_shape(img, [None, self.img_channels, self.resolution // 2, self.resolution // 2])
# img = upfirdn2d.upsample2d(img, self.resample_filter)
if self.is_last or self.architecture == 'skip':
y = self.torgb(x, next(w_iter), fused_modconv=fused_modconv)
y = y.to(dtype=torch.float32,
memory_format=torch.contiguous_format)
img = img.add_(y) if img is not None else y
# assert x.dtype == dtype # support AMP in this library
assert img is None or img.dtype == torch.float32
return x, img
def extra_repr(self):
return f'resolution={self.resolution:d}, architecture={self.architecture:s}'
#----------------------------------------------------------------------------
# for 512x512 generation
@persistence.persistent_class
class SuperresolutionHybrid8X(torch.nn.Module):
def __init__(
self,
channels,
img_resolution,
sr_num_fp16_res,
sr_antialias,
num_fp16_res=4,
conv_clamp=None,
channel_base=None,
channel_max=None, # IGNORE
**block_kwargs):
super().__init__()
# assert img_resolution == 512
use_fp16 = sr_num_fp16_res > 0
self.input_resolution = 128
self.sr_antialias = sr_antialias
self.block0 = SynthesisBlock(channels,
128,
w_dim=512,
resolution=256,
img_channels=3,
is_last=False,
use_fp16=use_fp16,
conv_clamp=(256 if use_fp16 else None),
**block_kwargs)
self.block1 = SynthesisBlock(128,
64,
w_dim=512,
resolution=512,
img_channels=3,
is_last=True,
use_fp16=use_fp16,
conv_clamp=(256 if use_fp16 else None),
**block_kwargs)
self.register_buffer('resample_filter',
upfirdn2d.setup_filter([1, 3, 3, 1]))
def forward(self, rgb, x, ws, **block_kwargs):
ws = ws[:, -1:, :].repeat(1, 3, 1)
if x.shape[-1] != self.input_resolution:
x = torch.nn.functional.interpolate(x,
size=(self.input_resolution,
self.input_resolution),
mode='bilinear',
align_corners=False,
antialias=self.sr_antialias)
rgb = torch.nn.functional.interpolate(rgb,
size=(self.input_resolution,
self.input_resolution),
mode='bilinear',
align_corners=False,
antialias=self.sr_antialias)
x, rgb = self.block0(x, rgb, ws, **block_kwargs) # block_kwargs: {'noise_mode': 'none'}
x, rgb = self.block1(x, rgb, ws, **block_kwargs)
return rgb
#----------------------------------------------------------------------------
# for 256x256 generation
@persistence.persistent_class
class SuperresolutionHybrid4X(torch.nn.Module):
def __init__(
self,
channels,
img_resolution,
sr_num_fp16_res,
sr_antialias,
num_fp16_res=4,
conv_clamp=None,
channel_base=None,
channel_max=None, # IGNORE
**block_kwargs):
super().__init__()
# assert img_resolution == 256
use_fp16 = sr_num_fp16_res > 0
self.sr_antialias = sr_antialias
self.input_resolution = 128
self.block0 = SynthesisBlockNoUp(
channels,
128,
w_dim=512,
resolution=128,
img_channels=3,
is_last=False,
use_fp16=use_fp16,
conv_clamp=(256 if use_fp16 else None),
**block_kwargs)
self.block1 = SynthesisBlock(128,
64,
w_dim=512,
resolution=256,
img_channels=3,
is_last=True,
use_fp16=use_fp16,
conv_clamp=(256 if use_fp16 else None),
**block_kwargs)
self.register_buffer('resample_filter',
upfirdn2d.setup_filter([1, 3, 3, 1]))
def forward(self, rgb, x, ws, **block_kwargs):
ws = ws[:, -1:, :].repeat(1, 3, 1)
if x.shape[-1] < self.input_resolution:
x = torch.nn.functional.interpolate(x,
size=(self.input_resolution,
self.input_resolution),
mode='bilinear',
align_corners=False,
antialias=self.sr_antialias)
rgb = torch.nn.functional.interpolate(rgb,
size=(self.input_resolution,
self.input_resolution),
mode='bilinear',
align_corners=False,
antialias=self.sr_antialias)
x, rgb = self.block0(x, rgb, ws, **block_kwargs)
x, rgb = self.block1(x, rgb, ws, **block_kwargs)
return rgb
#----------------------------------------------------------------------------
# for 128 x 128 generation
@persistence.persistent_class
class SuperresolutionHybrid2X(torch.nn.Module):
def __init__(
self,
channels,
img_resolution,
sr_num_fp16_res,
sr_antialias,
num_fp16_res=4,
conv_clamp=None,
channel_base=None,
channel_max=None, # IGNORE
**block_kwargs):
super().__init__()
assert img_resolution == 128
use_fp16 = sr_num_fp16_res > 0
self.input_resolution = 64
# self.input_resolution = 128
self.sr_antialias = sr_antialias
self.block0 = SynthesisBlockNoUp(
channels,
128,
w_dim=512,
resolution=64,
# resolution=128,
img_channels=3,
is_last=False,
use_fp16=use_fp16,
conv_clamp=(256 if use_fp16 else None),
**block_kwargs)
self.block1 = SynthesisBlock(128,
64,
w_dim=512,
resolution=128,
# resolution=256,
img_channels=3,
is_last=True,
use_fp16=use_fp16,
conv_clamp=(256 if use_fp16 else None),
**block_kwargs)
self.register_buffer('resample_filter',
upfirdn2d.setup_filter([1, 3, 3, 1]))
def forward(self, rgb, x, ws, **block_kwargs):
ws = ws[:, -1:, :].repeat(1, 3, 1)
if x.shape[-1] != self.input_resolution:
x = torch.nn.functional.interpolate(x,
size=(self.input_resolution,
self.input_resolution),
mode='bilinear',
align_corners=False,
antialias=self.sr_antialias)
rgb = torch.nn.functional.interpolate(rgb,
size=(self.input_resolution,
self.input_resolution),
mode='bilinear',
align_corners=False,
antialias=self.sr_antialias)
x, rgb = self.block0(x, rgb, ws, **block_kwargs)
x, rgb = self.block1(x, rgb, ws, **block_kwargs)
return rgb
#----------------------------------------------------------------------------
# for 512x512 generation
@persistence.persistent_class
class SuperresolutionHybrid8XDC(torch.nn.Module):
def __init__(
self,
channels,
img_resolution,
sr_num_fp16_res,
sr_antialias,
num_fp16_res=4,
conv_clamp=None,
channel_base=None,
channel_max=None, # IGNORE
**block_kwargs):
super().__init__()
# assert img_resolution == 512
use_fp16 = sr_num_fp16_res > 0
self.input_resolution = 128
self.sr_antialias = sr_antialias
self.block0 = SynthesisBlock(channels,
256,
w_dim=512,
resolution=256,
img_channels=3,
is_last=False,
use_fp16=use_fp16,
conv_clamp=(256 if use_fp16 else None),
**block_kwargs)
self.block1 = SynthesisBlock(256,
128,
w_dim=512,
resolution=512,
img_channels=3,
is_last=True,
use_fp16=use_fp16,
conv_clamp=(256 if use_fp16 else None),
**block_kwargs)
def forward(self, rgb, x, ws, base_x=None, **block_kwargs):
ws = ws[:, -1:, :].repeat(1, 3, 1) # BS 3 512
# st()
if x.shape[-1] != self.input_resolution: # resize 64 => 128
x = torch.nn.functional.interpolate(x,
size=(self.input_resolution,
self.input_resolution),
mode='bilinear',
align_corners=False,
antialias=self.sr_antialias)
rgb = torch.nn.functional.interpolate(rgb,
size=(self.input_resolution,
self.input_resolution),
mode='bilinear',
align_corners=False,
antialias=self.sr_antialias)
x, rgb = self.block0(x, rgb, ws, **block_kwargs)
# print(f'device={self.block0.conv1.weight.device}')
x, rgb = self.block1(x, rgb, ws, **block_kwargs)
# print(f'device={self.block1.conv1.weight.device}')
return rgb
#----------------------------------------------------------------------------
|