Spaces:
Running
on
Zero
Running
on
Zero
File size: 7,891 Bytes
7f51798 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 |
import torch as th
import numpy as np
from functools import partial
def expand_t_like_x(t, x):
"""Function to reshape time t to broadcastable dimension of x
Args:
t: [batch_dim,], time vector
x: [batch_dim,...], data point
"""
dims = [1] * (len(x.size()) - 1)
t = t.view(t.size(0), *dims)
return t
#################### Coupling Plans ####################
class ICPlan:
"""Linear Coupling Plan"""
def __init__(self, sigma=0.0):
self.sigma = sigma
def compute_alpha_t(self, t):
"""Compute the data coefficient along the path"""
return t, 1
def compute_sigma_t(self, t):
"""Compute the noise coefficient along the path"""
return 1 - t, -1
def compute_d_alpha_alpha_ratio_t(self, t):
"""Compute the ratio between d_alpha and alpha"""
return 1 / t
def compute_drift(self, x, t):
"""We always output sde according to score parametrization; """
t = expand_t_like_x(t, x)
alpha_ratio = self.compute_d_alpha_alpha_ratio_t(t)
sigma_t, d_sigma_t = self.compute_sigma_t(t)
drift = alpha_ratio * x
diffusion = alpha_ratio * (sigma_t ** 2) - sigma_t * d_sigma_t
return -drift, diffusion
def compute_diffusion(self, x, t, form="constant", norm=1.0):
"""Compute the diffusion term of the SDE
Args:
x: [batch_dim, ...], data point
t: [batch_dim,], time vector
form: str, form of the diffusion term
norm: float, norm of the diffusion term
"""
t = expand_t_like_x(t, x)
choices = {
"constant": norm,
"SBDM": norm * self.compute_drift(x, t)[1],
"sigma": norm * self.compute_sigma_t(t)[0],
"linear": norm * (1 - t),
"decreasing": 0.25 * (norm * th.cos(np.pi * t) + 1) ** 2,
"inccreasing-decreasing": norm * th.sin(np.pi * t) ** 2,
}
try:
diffusion = choices[form]
except KeyError:
raise NotImplementedError(f"Diffusion form {form} not implemented")
return diffusion
def get_score_from_velocity(self, velocity, x, t):
"""Wrapper function: transfrom velocity prediction model to score
Args:
velocity: [batch_dim, ...] shaped tensor; velocity model output
x: [batch_dim, ...] shaped tensor; x_t data point
t: [batch_dim,] time tensor
"""
t = expand_t_like_x(t, x)
alpha_t, d_alpha_t = self.compute_alpha_t(t)
sigma_t, d_sigma_t = self.compute_sigma_t(t)
mean = x
reverse_alpha_ratio = alpha_t / d_alpha_t
var = sigma_t**2 - reverse_alpha_ratio * d_sigma_t * sigma_t
score = (reverse_alpha_ratio * velocity - mean) / var
return score
def get_noise_from_velocity(self, velocity, x, t):
"""Wrapper function: transfrom velocity prediction model to denoiser
Args:
velocity: [batch_dim, ...] shaped tensor; velocity model output
x: [batch_dim, ...] shaped tensor; x_t data point
t: [batch_dim,] time tensor
"""
t = expand_t_like_x(t, x)
alpha_t, d_alpha_t = self.compute_alpha_t(t)
sigma_t, d_sigma_t = self.compute_sigma_t(t)
mean = x
reverse_alpha_ratio = alpha_t / d_alpha_t
var = reverse_alpha_ratio * d_sigma_t - sigma_t
noise = (reverse_alpha_ratio * velocity - mean) / var
return noise
def get_velocity_from_score(self, score, x, t):
"""Wrapper function: transfrom score prediction model to velocity
Args:
score: [batch_dim, ...] shaped tensor; score model output
x: [batch_dim, ...] shaped tensor; x_t data point
t: [batch_dim,] time tensor
"""
t = expand_t_like_x(t, x)
drift, var = self.compute_drift(x, t)
velocity = var * score - drift
return velocity
def get_xstart_from_velocity(self, velocity, x_t, t, return_snr=False):
"""Wrapper function: transfrom velocity prediction model to score
Args:
velocity: [batch_dim, ...] shaped tensor; velocity model output
x_t: [batch_dim, ...] shaped tensor; x_t data point
t: [batch_dim,] time tensor
"""
t = expand_t_like_x(t, x_t)
alpha_t, _ = self.compute_alpha_t(t)
sigma_t, _ = self.compute_sigma_t(t)
# mean = x_t
x_start = (sigma_t * velocity + x_t) / (alpha_t + sigma_t)
# reverse_alpha_ratio = alpha_t / d_alpha_t
# var = sigma_t**2 - reverse_alpha_ratio * d_sigma_t * sigma_t
# score = (reverse_alpha_ratio * velocity - mean) / var
if return_snr:
snr = (alpha_t / sigma_t) ** 2
return x_start, snr
else:
return x_start
def compute_mu_t(self, t, x0, x1):
"""Compute the mean of time-dependent density p_t"""
t = expand_t_like_x(t, x1)
alpha_t, _ = self.compute_alpha_t(t)
sigma_t, _ = self.compute_sigma_t(t)
return alpha_t * x1 + sigma_t * x0
def compute_xt(self, t, x0, x1):
"""Sample xt from time-dependent density p_t; rng is required"""
xt = self.compute_mu_t(t, x0, x1)
return xt
def compute_ut(self, t, x0, x1, xt):
"""Compute the vector field corresponding to p_t"""
t = expand_t_like_x(t, x1)
_, d_alpha_t = self.compute_alpha_t(t)
_, d_sigma_t = self.compute_sigma_t(t)
return d_alpha_t * x1 + d_sigma_t * x0
def plan(self, t, x0, x1):
xt = self.compute_xt(t, x0, x1)
ut = self.compute_ut(t, x0, x1, xt)
return t, xt, ut
class VPCPlan(ICPlan):
"""class for VP path flow matching"""
def __init__(self, sigma_min=0.1, sigma_max=20.0):
self.sigma_min = sigma_min
self.sigma_max = sigma_max
self.log_mean_coeff = lambda t: -0.25 * ((1 - t) ** 2) * (self.sigma_max - self.sigma_min) - 0.5 * (1 - t) * self.sigma_min
self.d_log_mean_coeff = lambda t: 0.5 * (1 - t) * (self.sigma_max - self.sigma_min) + 0.5 * self.sigma_min
def compute_alpha_t(self, t):
"""Compute coefficient of x1"""
alpha_t = self.log_mean_coeff(t)
alpha_t = th.exp(alpha_t)
d_alpha_t = alpha_t * self.d_log_mean_coeff(t)
return alpha_t, d_alpha_t
def compute_sigma_t(self, t):
"""Compute coefficient of x0"""
p_sigma_t = 2 * self.log_mean_coeff(t)
sigma_t = th.sqrt(1 - th.exp(p_sigma_t))
d_sigma_t = th.exp(p_sigma_t) * (2 * self.d_log_mean_coeff(t)) / (-2 * sigma_t)
return sigma_t, d_sigma_t
def compute_d_alpha_alpha_ratio_t(self, t):
"""Special purposed function for computing numerical stabled d_alpha_t / alpha_t"""
return self.d_log_mean_coeff(t)
def compute_drift(self, x, t):
"""Compute the drift term of the SDE"""
t = expand_t_like_x(t, x)
beta_t = self.sigma_min + (1 - t) * (self.sigma_max - self.sigma_min)
return -0.5 * beta_t * x, beta_t / 2
class GVPCPlan(ICPlan):
def __init__(self, sigma=0.0):
super().__init__(sigma)
def compute_alpha_t(self, t):
"""Compute coefficient of x1"""
alpha_t = th.sin(t * np.pi / 2)
d_alpha_t = np.pi / 2 * th.cos(t * np.pi / 2)
return alpha_t, d_alpha_t
def compute_sigma_t(self, t):
"""Compute coefficient of x0"""
sigma_t = th.cos(t * np.pi / 2)
d_sigma_t = -np.pi / 2 * th.sin(t * np.pi / 2)
return sigma_t, d_sigma_t
def compute_d_alpha_alpha_ratio_t(self, t):
"""Special purposed function for computing numerical stabled d_alpha_t / alpha_t"""
return np.pi / (2 * th.tan(t * np.pi / 2))
|