Spaces:
Running
on
Zero
Running
on
Zero
File size: 16,161 Bytes
7f51798 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 |
# Copyright (c) 2022, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
#
# NVIDIA CORPORATION & AFFILIATES and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION & AFFILIATES is strictly prohibited.
import json
import math
import numpy as np
import os
import argparse
import multiprocessing as mp
from multiprocessing import Pool
import trimesh
import tqdm
import torch
import nvdiffrast.torch as dr
import kaolin as kal
import glob
import ipdb
import pytorch3d.ops
parser = argparse.ArgumentParser(description='sample surface points from mesh')
parser.add_argument(
'--n_proc', type=int, default=8,
help='Number of processes to run in parallel'
'(0 means sequential execution).')
parser.add_argument(
'--n_points', type=int, default=5000,
help='Number of points to sample per model.')
parser.add_argument(
'--n_views', type=int, default=100,
help='Number of views per model.')
parser.add_argument(
'--image_height', type=int, default=640,
help='Depth image height.')
parser.add_argument(
'--image_width', type=int, default=640,
help='Depth image width.')
parser.add_argument(
'--focal_length_x', type=float, default=640,
help='Focal length in x direction.')
parser.add_argument(
'--focal_length_y', type=float, default=640,
help='Focal length in y direction.')
parser.add_argument(
'--principal_point_x', type=float, default=320,
help='Principal point location in x direction.')
parser.add_argument(
'--principal_point_y', type=float, default=320,
help='Principal point location in y direction.')
parser.add_argument("--shape_root", type=str, default='/mnt/petrelfs/caoziang/3D_generation/Checkpoint_all/diffusion_shapenet_testmodel27_omni_ablation2/ddpm_5000/test', help="path to the save resules shapenet dataset")
parser.add_argument("--save_root", type=str, default='/mnt/petrelfs/caoziang/3D_generation/Checkpoint_all/diffusion_shapenet_testmodel27_omni_ablation2/ddpm_vis_ab2surface', help="path to the split shapenet dataset")
options = parser.parse_args()
# create array for inverse mapping
coordspx2 = np.stack(np.nonzero(np.ones((options.image_height, options.image_width))), -1).astype(np.float32)
coordspx2 = coordspx2[:, ::-1]
fusion_intrisics = np.array(
[
[options.focal_length_x, 0, options.principal_point_x],
[0, options.focal_length_y, options.principal_point_y],
[0, 0, 1]
])
# glctx = dr.RasterizeGLContext() # EGL/egl.h: No such file or directory
glctx = dr.RasterizeCudaContext()
def CalcLinearZ(depth):
# depth = depth * 2 - 1
zFar = 100.0
zNear = 0.1
linear = zNear / (zFar - depth * (zFar - zNear)) * zFar
return linear
def projection_cv_new(fx, fy, cx, cy, width, height, n=1.0, f=50.0):
return np.array(
[[-2 * fx / width, 0.0, (width - 2 * cx) / width, 0.0],
[0.0, -2 * fy / height, (height - 2 * cy) / height, 0.0],
[0.0, 0.0, (-f - n) / (f - n), -2.0 * f * n / (f - n)],
[0.0, 0.0, -1.0, 0.0]])
def interpolate(attr, rast, attr_idx, rast_db=None):
return dr.interpolate(
attr.contiguous(), rast, attr_idx, rast_db=rast_db,
diff_attrs=None if rast_db is None else 'all')
def render_nvdiffrast(v_pos, tris, T_bx4x4):
# T_bx4x4 - world to cam
proj = projection_cv_new(
fx=options.focal_length_x, fy=options.focal_length_y, cx=options.principal_point_x,
cy=options.principal_point_y,
width=options.image_width, height=options.image_height, n=0.1, f=100.0)
fix = torch.eye(4, dtype=torch.float32, device='cuda')
fix[2, 2] = -1
fix[1, 1] = -1
fix[0, 0] = -1
fix = fix.unsqueeze(0).repeat(T_bx4x4.shape[0], 1, 1)
proj = torch.tensor(proj, dtype=torch.float32, device='cuda').unsqueeze(0).repeat(T_bx4x4.shape[0], 1, 1)
T_world_cam_bx4x4 = torch.bmm(fix, T_bx4x4)
mvp = torch.bmm(proj, T_world_cam_bx4x4)
v_pos_clip = torch.matmul(
torch.nn.functional.pad(v_pos, pad=(0, 1), mode='constant', value=1.0),
torch.transpose(mvp, 1, 2))
rast, db = dr.rasterize(
glctx, torch.tensor(v_pos_clip, dtype=torch.float32, device='cuda'), tris.int(),
(options.image_height, options.image_width))
v_pos_cam = torch.matmul(
torch.nn.functional.pad(v_pos, pad=(0, 1), mode='constant', value=1.0),
torch.transpose(T_world_cam_bx4x4, 1, 2))
gb_pos_cam, _ = interpolate(v_pos_cam, rast, tris.int())
depth_maps = gb_pos_cam[..., 2].abs()
return depth_maps
def as_mesh(scene_or_mesh):
"""
Convert a possible scene to a mesh.
If conversion occurs, the returned mesh has only vertex and face data.
"""
if isinstance(scene_or_mesh, trimesh.Scene):
if len(scene_or_mesh.geometry) == 0:
mesh = None # empty scene
else:
# we lose texture information here
mesh = trimesh.util.concatenate(
tuple(
trimesh.Trimesh(vertices=g.vertices, faces=g.faces)
for g in scene_or_mesh.geometry.values()))
else:
assert (isinstance(scene_or_mesh, trimesh.Trimesh))
mesh = scene_or_mesh
return mesh
def render(mesh_v, mesh_f, Rs):
"""
Render the given mesh using the generated views.
:param base_mesh: mesh to render
:type base_mesh: mesh.Mesh
:param Rs: rotation matrices
:type Rs: [numpy.ndarray]
:return: depth maps
:rtype: numpy.ndarray
"""
T_bx4x4 = torch.zeros((options.n_views, 4, 4), dtype=torch.float32, device='cuda')
T_bx4x4[:, 3, 3] = 1
T_bx4x4[:, 2, 3] = 1
T_bx4x4[:, :3, :3] = torch.tensor(Rs, dtype=torch.float32, device='cuda')
depthmaps = render_nvdiffrast(
mesh_v,
mesh_f, T_bx4x4)
return depthmaps
def get_points():
"""
:param n_points: number of points
:type n_points: int
:return: list of points
:rtype: numpy.ndarray
"""
rnd = 1.
points = []
offset = 2. / options.n_views
increment = math.pi * (3. - math.sqrt(5.))
for i in range(options.n_views):
y = ((i * offset) - 1) + (offset / 2)
r = math.sqrt(1 - pow(y, 2))
phi = ((i + rnd) % options.n_views) * increment
x = math.cos(phi) * r
z = math.sin(phi) * r
points.append([x, y, z])
return np.array(points)
def get_views(semi_sphere=False):
"""
Generate a set of views to generate depth maps from.
:param n_views: number of views per axis
:type n_views: int
:return: rotation matrices
:rtype: [numpy.ndarray]
"""
Rs = []
points = get_points()
if semi_sphere:
points[:, 2] = -np.abs(points[:, 2]) - 0.1
for i in range(points.shape[0]):
longitude = - math.atan2(points[i, 0], points[i, 1])
latitude = math.atan2(points[i, 2], math.sqrt(points[i, 0] ** 2 + points[i, 1] ** 2))
R_x = np.array(
[[1, 0, 0],
[0, math.cos(latitude), -math.sin(latitude)],
[0, math.sin(latitude), math.cos(latitude)]])
R_y = np.array(
[[math.cos(longitude), 0, math.sin(longitude)],
[0, 1, 0],
[-math.sin(longitude), 0, math.cos(longitude)]])
R = R_x @ R_y
Rs.append(R)
return Rs
def fusion(depthmaps, Rs):
"""
Fuse the rendered depth maps.
:param depthmaps: depth maps
:type depthmaps: numpy.ndarray
:param Rs: rotation matrices corresponding to views
:type Rs: [numpy.ndarray]
:return: (T)SDF
:rtype: numpy.ndarray
"""
# sample points inside mask
sample_per_view = options.n_points // options.n_views
sample_bxn = torch.zeros((options.n_views, sample_per_view), device='cuda', dtype=torch.long)
for i in range(len(Rs)):
mask = depthmaps[i] > 0
valid_idx = torch.nonzero(mask.reshape(-1)).squeeze(-1)
idx = list(range(valid_idx.shape[0]))
np.random.shuffle(idx)
idx = idx[:sample_per_view]
sample_bxn[i] = torch.tensor(valid_idx[idx])
depthmaps = torch.gather(depthmaps.reshape(options.n_views, -1), 1, sample_bxn)
inv_Ks_bx3x3 = torch.tensor(np.linalg.inv(fusion_intrisics), dtype=torch.float32, device='cuda').unsqueeze(
0).repeat(options.n_views, 1, 1)
T_bx4x4 = torch.zeros((options.n_views, 4, 4), dtype=torch.float32, device='cuda')
T_bx4x4[:, 3, 3] = 1
T_bx4x4[:, 2, 3] = 1
T_bx4x4[:, :3, :3] = torch.tensor(Rs, dtype=torch.float32, device='cuda')
inv_T_bx4x4 = torch.inverse(T_bx4x4)
tf_coords_bxpx2 = torch.tensor(coordspx2.copy(), dtype=torch.float32, device='cuda').unsqueeze(0).repeat(
options.n_views, 1, 1)
tf_coords_bxpx2 = torch.gather(tf_coords_bxpx2, 1, sample_bxn.unsqueeze(-1).repeat(1, 1, 2))
tf_coords_bxpx3 = torch.cat([tf_coords_bxpx2, torch.ones_like(tf_coords_bxpx2[..., :1])], -1)
tf_coords_bxpx3 *= depthmaps.reshape(options.n_views, -1, 1)
tf_cam_bxpx3 = torch.bmm(inv_Ks_bx3x3, tf_coords_bxpx3.transpose(1, 2)).transpose(1, 2)
tf_cam_bxpx4 = torch.cat([tf_cam_bxpx3, torch.ones_like(tf_cam_bxpx3[..., :1])], -1)
tf_world_bxpx3 = torch.bmm(inv_T_bx4x4, tf_cam_bxpx4.transpose(1, 2)).transpose(1, 2)[..., :3]
return tf_world_bxpx3.reshape(-1, 3)
def normalize(vertices, faces, normalized_scale=0.9, rotate_x=False):
vertices = vertices.cuda()
if rotate_x: # rotate along x axis for 90 degrees to match the two coordiantes
rot_mat = torch.eye(n=3, device='cuda')
theta = np.pi / 90 # degree
rot_mat[1,1] = np.cos(theta)
rot_mat[2,2] = np.cos(theta)
rot_mat[1,2] =-np.sin(theta)
rot_mat[2,1] = np.sin(theta)
# ipdb.set_trace()
vertices = rot_mat @ vertices.transpose(0,1)
vertices = vertices.transpose(0,1)
scale = (vertices.max(dim=0)[0] - vertices.min(dim=0)[0]).max()
mesh_v1 = vertices / scale * normalized_scale
mesh_f1 = faces.long().cuda()
return mesh_v1, mesh_f1
def sample_surface_pts(path):
# ipdb.set_trace()
try:
mesh_path, output_pth, debug = path
# mesh = kal.io.obj.import_mesh(mesh_path)
# ipdb.set_trace()
mesh = trimesh.load(mesh_path) # fail to load ply?
#ipdb.set_trace()
if mesh.vertices.shape[0] == 0:
return
mesh_v = torch.Tensor(mesh.vertices)
mesh_v, mesh_f = normalize(mesh_v, torch.Tensor(mesh.faces), normalized_scale=0.9, rotate_x=True)
# generate camera matrices
# Rs = get_views()
# Rs = get_views(semi_sphere=True)
Rs = get_views(semi_sphere=False)
# get depth images
depths = render(mesh_v, mesh_f, Rs)
# project to world space
try:
pcd = fusion(depths, Rs)
except:
return
pcd = pcd.cpu().numpy()
#np.savez(output_pth, pcd=pcd)
#ipdb.set_trace()
#if debug:
pcd = trimesh.points.PointCloud(pcd)
pcd.export(output_pth.replace('.npz', '.obj'))
except Exception as e:
# print('error')
print(e, flush=True)
if __name__ == '__main__':
mp.set_start_method('spawn')
shapenet_root = options.shape_root
save_root = options.save_root
debug = True
#model_list = sorted(os.listdir(shapenet_root))[:7500]
# model_list=glob.glob(os.path.join(shapenet_root, '*.obj'))
# os.makedirs(save_root, exist_ok=True)
# cmds = [(os.path.join(shapenet_root, id.split('/')[-1]), os.path.join(save_root, id.split('/')[-1]), debug) for id in model_list]
# cmds = [(os.path.join(shapenet_root, id.split('/')[-1]), os.path.join(save_root, 'pcd_4096.ply'), debug) for id in model_list]
# cmds += [(os.path.join(shapenet_root, id.split('/')[-1]), os.path.join(save_root, 'test.obj'), debug) for id in model_list]
objv_dataset = '/mnt/sfs-common/yslan/Dataset/Obajverse/chunk-jpeg-normal/bs_16_fixsave3/170K/512/'
dataset_json = os.path.join(objv_dataset, 'dataset.json')
with open(dataset_json, 'r') as f:
dataset_json = json.load(f)
# all_objs = dataset_json['Animals'][::3][:6250]
all_objs = dataset_json['Animals'][::3][1100:2200]
all_objs = all_objs[:600]
cmds = []
# for instance_name in os.listdir(shapenet_root)[:]:
# cmds += [(os.path.join(shapenet_root, instance_name), os.path.join(save_root, f'{instance_name.split(".")[0]}_pcd_4096.ply'), debug)]
# ! for gt
# for obj_folder in sorted(os.listdir(shapenet_root)):
# cmds += [(os.path.join(shapenet_root, obj_folder, 'meshes/model.obj'), os.path.join(save_root, f'{obj_folder}_pcd_4096.ply'), debug)]
# ! for baseline samples
os.makedirs(save_root, exist_ok=True)
# ! free3d
# for obj_folder in tqdm.tqdm(sorted(os.listdir(shapenet_root))):
# if not os.path.isdir(os.path.join(shapenet_root, obj_folder)):
# continue
# if 'LGM' in shapenet_root:
# gs_path = os.path.join(shapenet_root,obj_folder, f'0gaussian.ply')
# else: # splatter-img
# gs_path = os.path.join(shapenet_root,obj_folder, f'0/mesh.ply')
# pcd = trimesh.load(gs_path).vertices # unsqueeze()
# fps_pcd, fps_idx = pytorch3d.ops.sample_farthest_points(
# # torch.from_numpy(pcd).unsqueeze(0).cuda(), K=4096,
# torch.from_numpy(pcd).unsqueeze(0).cuda(), K=4000,
# random_start_point=True) # B self.latent_num
# # assert fps_pcd.shape[1] == 4096
# pcd = trimesh.points.PointCloud(fps_pcd[0].cpu().numpy())
# output_path = os.path.join(save_root, f'{obj_folder}_pcd_4096.ply')
# pcd.export(output_path.replace('.npz', '.obj'))
# objv
# for obj_folder in tqdm.tqdm(sorted(os.listdir(all_objs))):
for obj_folder in tqdm.tqdm(all_objs):
# ipdb.set_trace()
if not os.path.isdir(os.path.join(shapenet_root, obj_folder)):
continue
save_name = '-'.join(obj_folder.split('/'))
if 'LGM' in shapenet_root:
gs_path = os.path.join(shapenet_root,obj_folder, f'0gaussian.ply')
else: # splatter-img
gs_path = os.path.join(shapenet_root,obj_folder, f'0/mesh.ply')
pcd = trimesh.load(gs_path).vertices # unsqueeze()
fps_pcd, fps_idx = pytorch3d.ops.sample_farthest_points(
# torch.from_numpy(pcd).unsqueeze(0).cuda(), K=4096,
torch.from_numpy(pcd).unsqueeze(0).cuda(), K=4000,
random_start_point=True) # B self.latent_num
# assert fps_pcd.shape[1] == 4096
pcd = trimesh.points.PointCloud(fps_pcd[0].cpu().numpy())
output_path = os.path.join(save_root, f'{save_name}_pcd_4096.ply')
pcd.export(output_path.replace('.npz', '.obj'))
# ! lgm
# for idx in [0]:
# for i in range(10):
# img=os.path.join(shapenet_root,obj_folder, str(idx),f'{i}.jpg')
# img=os.path.join(path,obj_folder, str(idx),f'sample-0-{i}.jpg')
# files.append(img)
# if 'CRM' in shapenet_root:
# # ipdb.set_trace()
# mesh_path = glob.glob(os.path.join(shapenet_root, obj_folder, f'{idx}', '*.obj'))[0]
# else:
# if os.path.exists((os.path.join(shapenet_root, obj_folder, f'{idx}/mesh.obj'))):
# mesh_path = os.path.join(shapenet_root, obj_folder, f'{idx}/mesh.obj')
# else:
# mesh_path = os.path.join(shapenet_root, obj_folder, f'{idx}/mesh.ply')
# cmds += [(mesh_path, os.path.join(save_root, f'{obj_folder}_pcd_4096.ply'), debug)]
if options.n_proc == 0:
for filepath in tqdm.tqdm(cmds):
sample_surface_pts(filepath)
else:
with Pool(options.n_proc) as p:
list(tqdm.tqdm(p.imap(sample_surface_pts, cmds), total=len(cmds)))
|