File size: 10,676 Bytes
7f51798
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
import math
import os
from typing import List, Optional, Union

import numpy as np
import torch
from einops import rearrange
from imwatermark import WatermarkEncoder
from omegaconf import ListConfig
from PIL import Image
from torch import autocast

from sgm.util import append_dims


class WatermarkEmbedder:
    def __init__(self, watermark):
        self.watermark = watermark
        self.num_bits = len(WATERMARK_BITS)
        self.encoder = WatermarkEncoder()
        self.encoder.set_watermark("bits", self.watermark)

    def __call__(self, image: torch.Tensor) -> torch.Tensor:
        """
        Adds a predefined watermark to the input image

        Args:
            image: ([N,] B, RGB, H, W) in range [0, 1]

        Returns:
            same as input but watermarked
        """
        squeeze = len(image.shape) == 4
        if squeeze:
            image = image[None, ...]
        n = image.shape[0]
        image_np = rearrange(
            (255 * image).detach().cpu(), "n b c h w -> (n b) h w c"
        ).numpy()[:, :, :, ::-1]
        # torch (b, c, h, w) in [0, 1] -> numpy (b, h, w, c) [0, 255]
        # watermarking libary expects input as cv2 BGR format
        for k in range(image_np.shape[0]):
            image_np[k] = self.encoder.encode(image_np[k], "dwtDct")
        image = torch.from_numpy(
            rearrange(image_np[:, :, :, ::-1], "(n b) h w c -> n b c h w", n=n)
        ).to(image.device)
        image = torch.clamp(image / 255, min=0.0, max=1.0)
        if squeeze:
            image = image[0]
        return image


# A fixed 48-bit message that was choosen at random
# WATERMARK_MESSAGE = 0xB3EC907BB19E
WATERMARK_MESSAGE = 0b101100111110110010010000011110111011000110011110
# bin(x)[2:] gives bits of x as str, use int to convert them to 0/1
WATERMARK_BITS = [int(bit) for bit in bin(WATERMARK_MESSAGE)[2:]]
embed_watermark = WatermarkEmbedder(WATERMARK_BITS)


def get_unique_embedder_keys_from_conditioner(conditioner):
    return list({x.input_key for x in conditioner.embedders})


def perform_save_locally(save_path, samples):
    os.makedirs(os.path.join(save_path), exist_ok=True)
    base_count = len(os.listdir(os.path.join(save_path)))
    samples = embed_watermark(samples)
    for sample in samples:
        sample = 255.0 * rearrange(sample.cpu().numpy(), "c h w -> h w c")
        Image.fromarray(sample.astype(np.uint8)).save(
            os.path.join(save_path, f"{base_count:09}.png")
        )
        base_count += 1


class Img2ImgDiscretizationWrapper:
    """
    wraps a discretizer, and prunes the sigmas
    params:
        strength: float between 0.0 and 1.0. 1.0 means full sampling (all sigmas are returned)
    """

    def __init__(self, discretization, strength: float = 1.0):
        self.discretization = discretization
        self.strength = strength
        assert 0.0 <= self.strength <= 1.0

    def __call__(self, *args, **kwargs):
        # sigmas start large first, and decrease then
        sigmas = self.discretization(*args, **kwargs)
        print(f"sigmas after discretization, before pruning img2img: ", sigmas)
        sigmas = torch.flip(sigmas, (0,))
        sigmas = sigmas[: max(int(self.strength * len(sigmas)), 1)]
        print("prune index:", max(int(self.strength * len(sigmas)), 1))
        sigmas = torch.flip(sigmas, (0,))
        print(f"sigmas after pruning: ", sigmas)
        return sigmas


def do_sample(
    model,
    sampler,
    value_dict,
    num_samples,
    H,
    W,
    C,
    F,
    force_uc_zero_embeddings: Optional[List] = None,
    batch2model_input: Optional[List] = None,
    return_latents=False,
    filter=None,
    device="cuda",
):
    if force_uc_zero_embeddings is None:
        force_uc_zero_embeddings = []
    if batch2model_input is None:
        batch2model_input = []

    with torch.no_grad():
        with autocast(device) as precision_scope:
            with model.ema_scope():
                num_samples = [num_samples]
                batch, batch_uc = get_batch(
                    get_unique_embedder_keys_from_conditioner(model.conditioner),
                    value_dict,
                    num_samples,
                )
                for key in batch:
                    if isinstance(batch[key], torch.Tensor):
                        print(key, batch[key].shape)
                    elif isinstance(batch[key], list):
                        print(key, [len(l) for l in batch[key]])
                    else:
                        print(key, batch[key])
                c, uc = model.conditioner.get_unconditional_conditioning(
                    batch,
                    batch_uc=batch_uc,
                    force_uc_zero_embeddings=force_uc_zero_embeddings,
                )

                for k in c:
                    if not k == "crossattn":
                        c[k], uc[k] = map(
                            lambda y: y[k][: math.prod(num_samples)].to(device), (c, uc)
                        )

                additional_model_inputs = {}
                for k in batch2model_input:
                    additional_model_inputs[k] = batch[k]

                shape = (math.prod(num_samples), C, H // F, W // F)
                randn = torch.randn(shape).to(device)

                def denoiser(input, sigma, c):
                    return model.denoiser(
                        model.model, input, sigma, c, **additional_model_inputs
                    )

                samples_z = sampler(denoiser, randn, cond=c, uc=uc)
                samples_x = model.decode_first_stage(samples_z)
                samples = torch.clamp((samples_x + 1.0) / 2.0, min=0.0, max=1.0)

                if filter is not None:
                    samples = filter(samples)

                if return_latents:
                    return samples, samples_z
                return samples


def get_batch(keys, value_dict, N: Union[List, ListConfig], device="cuda"):
    # Hardcoded demo setups; might undergo some changes in the future

    batch = {}
    batch_uc = {}

    for key in keys:
        if key == "txt":
            batch["txt"] = (
                np.repeat([value_dict["prompt"]], repeats=math.prod(N))
                .reshape(N)
                .tolist()
            )
            batch_uc["txt"] = (
                np.repeat([value_dict["negative_prompt"]], repeats=math.prod(N))
                .reshape(N)
                .tolist()
            )
        elif key == "original_size_as_tuple":
            batch["original_size_as_tuple"] = (
                torch.tensor([value_dict["orig_height"], value_dict["orig_width"]])
                .to(device)
                .repeat(*N, 1)
            )
        elif key == "crop_coords_top_left":
            batch["crop_coords_top_left"] = (
                torch.tensor(
                    [value_dict["crop_coords_top"], value_dict["crop_coords_left"]]
                )
                .to(device)
                .repeat(*N, 1)
            )
        elif key == "aesthetic_score":
            batch["aesthetic_score"] = (
                torch.tensor([value_dict["aesthetic_score"]]).to(device).repeat(*N, 1)
            )
            batch_uc["aesthetic_score"] = (
                torch.tensor([value_dict["negative_aesthetic_score"]])
                .to(device)
                .repeat(*N, 1)
            )

        elif key == "target_size_as_tuple":
            batch["target_size_as_tuple"] = (
                torch.tensor([value_dict["target_height"], value_dict["target_width"]])
                .to(device)
                .repeat(*N, 1)
            )
        else:
            batch[key] = value_dict[key]

    for key in batch.keys():
        if key not in batch_uc and isinstance(batch[key], torch.Tensor):
            batch_uc[key] = torch.clone(batch[key])
    return batch, batch_uc


def get_input_image_tensor(image: Image.Image, device="cuda"):
    w, h = image.size
    print(f"loaded input image of size ({w}, {h})")
    width, height = map(
        lambda x: x - x % 64, (w, h)
    )  # resize to integer multiple of 64
    image = image.resize((width, height))
    image_array = np.array(image.convert("RGB"))
    image_array = image_array[None].transpose(0, 3, 1, 2)
    image_tensor = torch.from_numpy(image_array).to(dtype=torch.float32) / 127.5 - 1.0
    return image_tensor.to(device)


def do_img2img(
    img,
    model,
    sampler,
    value_dict,
    num_samples,
    force_uc_zero_embeddings=[],
    additional_kwargs={},
    offset_noise_level: float = 0.0,
    return_latents=False,
    skip_encode=False,
    filter=None,
    device="cuda",
):
    with torch.no_grad():
        with autocast(device) as precision_scope:
            with model.ema_scope():
                batch, batch_uc = get_batch(
                    get_unique_embedder_keys_from_conditioner(model.conditioner),
                    value_dict,
                    [num_samples],
                )
                c, uc = model.conditioner.get_unconditional_conditioning(
                    batch,
                    batch_uc=batch_uc,
                    force_uc_zero_embeddings=force_uc_zero_embeddings,
                )

                for k in c:
                    c[k], uc[k] = map(lambda y: y[k][:num_samples].to(device), (c, uc))

                for k in additional_kwargs:
                    c[k] = uc[k] = additional_kwargs[k]
                if skip_encode:
                    z = img
                else:
                    z = model.encode_first_stage(img)
                noise = torch.randn_like(z)
                sigmas = sampler.discretization(sampler.num_steps)
                sigma = sigmas[0].to(z.device)

                if offset_noise_level > 0.0:
                    noise = noise + offset_noise_level * append_dims(
                        torch.randn(z.shape[0], device=z.device), z.ndim
                    )
                noised_z = z + noise * append_dims(sigma, z.ndim)
                noised_z = noised_z / torch.sqrt(
                    1.0 + sigmas[0] ** 2.0
                )  # Note: hardcoded to DDPM-like scaling. need to generalize later.

                def denoiser(x, sigma, c):
                    return model.denoiser(model.model, x, sigma, c)

                samples_z = sampler(denoiser, noised_z, cond=c, uc=uc)
                samples_x = model.decode_first_stage(samples_z)
                samples = torch.clamp((samples_x + 1.0) / 2.0, min=0.0, max=1.0)

                if filter is not None:
                    samples = filter(samples)

                if return_latents:
                    return samples, samples_z
                return samples