File size: 29,466 Bytes
7f51798
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
# SPDX-FileCopyrightText: Copyright (c) 2021-2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: LicenseRef-NvidiaProprietary
#
# NVIDIA CORPORATION, its affiliates and licensors retain all intellectual
# property and proprietary rights in and to this material, related
# documentation and any modifications thereto. Any use, reproduction,
# disclosure or distribution of this material and related documentation
# without an express license agreement from NVIDIA CORPORATION or
# its affiliates is strictly prohibited.
"""Generator architecture from the paper
"Alias-Free Generative Adversarial Networks"."""

import numpy as np
import scipy.signal
import scipy.optimize
import torch
from torch_utils import misc
from torch_utils import persistence
from torch_utils.ops import conv2d_gradfix
from torch_utils.ops import filtered_lrelu
from torch_utils.ops import bias_act

#----------------------------------------------------------------------------
# from pdb import set_trace as st


@misc.profiled_function
def modulated_conv2d(
    x,  # Input tensor: [batch_size, in_channels, in_height, in_width]
    w,  # Weight tensor: [out_channels, in_channels, kernel_height, kernel_width]
    s,  # Style tensor: [batch_size, in_channels]
    demodulate=True,  # Apply weight demodulation?
    padding=0,  # Padding: int or [padH, padW]
    input_gain=None,  # Optional scale factors for the input channels: [], [in_channels], or [batch_size, in_channels]
):
    with misc.suppress_tracer_warnings(
    ):  # this value will be treated as a constant
        batch_size = int(x.shape[0])
    out_channels, in_channels, kh, kw = w.shape
    misc.assert_shape(w, [out_channels, in_channels, kh, kw])  # [OIkk]
    misc.assert_shape(x, [batch_size, in_channels, None, None])  # [NIHW]
    misc.assert_shape(s, [batch_size, in_channels])  # [NI]

    # Pre-normalize inputs.
    if demodulate:
        w = w * w.square().mean([1, 2, 3], keepdim=True).rsqrt()
        s = s * s.square().mean().rsqrt()

    # Modulate weights.
    w = w.unsqueeze(0)  # [NOIkk]
    w = w * s.unsqueeze(1).unsqueeze(3).unsqueeze(4)  # [NOIkk]

    # Demodulate weights.
    if demodulate:
        dcoefs = (w.square().sum(dim=[2, 3, 4]) + 1e-8).rsqrt()  # [NO]
        w = w * dcoefs.unsqueeze(2).unsqueeze(3).unsqueeze(4)  # [NOIkk]

    # Apply input scaling.
    if input_gain is not None:
        input_gain = input_gain.expand(batch_size, in_channels)  # [NI]
        w = w * input_gain.unsqueeze(1).unsqueeze(3).unsqueeze(4)  # [NOIkk]

    # Execute as one fused op using grouped convolution.
    x = x.reshape(1, -1, *x.shape[2:])
    w = w.reshape(-1, in_channels, kh, kw)
    x = conv2d_gradfix.conv2d(input=x,
                              weight=w.to(x.dtype),
                              padding=padding,
                              groups=batch_size)
    x = x.reshape(batch_size, -1, *x.shape[2:])
    return x


#----------------------------------------------------------------------------


@persistence.persistent_class
class FullyConnectedLayer(torch.nn.Module):
    def __init__(
            self,
            in_features,  # Number of input features.
            out_features,  # Number of output features.
            activation='linear',  # Activation function: 'relu', 'lrelu', etc.
            bias=True,  # Apply additive bias before the activation function?
            lr_multiplier=1,  # Learning rate multiplier.
            weight_init=1,  # Initial standard deviation of the weight tensor.
            bias_init=0,  # Initial value of the additive bias.
    ):
        super().__init__()
        self.in_features = in_features
        self.out_features = out_features
        self.activation = activation
        self.weight = torch.nn.Parameter(
            torch.randn([out_features, in_features]) *
            (weight_init / lr_multiplier))
        bias_init = np.broadcast_to(np.asarray(bias_init, dtype=np.float32),
                                    [out_features])
        self.bias = torch.nn.Parameter(
            torch.from_numpy(bias_init / lr_multiplier)) if bias else None
        self.weight_gain = lr_multiplier / np.sqrt(in_features)
        self.bias_gain = lr_multiplier

    def forward(self, x):
        w = self.weight.to(x.dtype) * self.weight_gain
        b = self.bias
        if b is not None:
            b = b.to(x.dtype)
            if self.bias_gain != 1:
                b = b * self.bias_gain
        if self.activation == 'linear' and b is not None:
            x = torch.addmm(b.unsqueeze(0), x, w.t())
        else:
            x = x.matmul(w.t())
            x = bias_act.bias_act(x, b, act=self.activation)
        return x

    def extra_repr(self):
        return f'in_features={self.in_features:d}, out_features={self.out_features:d}, activation={self.activation:s}'


#----------------------------------------------------------------------------


@persistence.persistent_class
class MappingNetwork(torch.nn.Module):
    def __init__(
            self,
            z_dim,  # Input latent (Z) dimensionality.
            c_dim,  # Conditioning label (C) dimensionality, 0 = no labels.
            w_dim,  # Intermediate latent (W) dimensionality.
            num_ws,  # Number of intermediate latents to output.
            num_layers=2,  # Number of mapping layers.
            lr_multiplier=0.01,  # Learning rate multiplier for the mapping layers.
            w_avg_beta=0.998,  # Decay for tracking the moving average of W during training.
    ):
        super().__init__()
        self.z_dim = z_dim
        self.c_dim = c_dim
        self.w_dim = w_dim
        self.num_ws = num_ws
        self.num_layers = num_layers
        self.w_avg_beta = w_avg_beta

        # Construct layers.
        self.embed = FullyConnectedLayer(
            self.c_dim, self.w_dim) if self.c_dim > 0 else None
        features = [self.z_dim + (self.w_dim if self.c_dim > 0 else 0)
                    ] + [self.w_dim] * self.num_layers
        for idx, in_features, out_features in zip(range(num_layers),
                                                  features[:-1], features[1:]):
            layer = FullyConnectedLayer(in_features,
                                        out_features,
                                        activation='lrelu',
                                        lr_multiplier=lr_multiplier)
            setattr(self, f'fc{idx}', layer)
        self.register_buffer('w_avg', torch.zeros([w_dim]))

    def forward(self,
                z,
                c,
                truncation_psi=1,
                truncation_cutoff=None,
                update_emas=False):
        misc.assert_shape(z, [None, self.z_dim])
        if truncation_cutoff is None:
            truncation_cutoff = self.num_ws

        # Embed, normalize, and concatenate inputs.
        x = z.to(torch.float32)
        x = x * (x.square().mean(1, keepdim=True) + 1e-8).rsqrt()
        if self.c_dim > 0:
            misc.assert_shape(c, [None, self.c_dim])
            y = self.embed(c.to(torch.float32))
            y = y * (y.square().mean(1, keepdim=True) + 1e-8).rsqrt()
            x = torch.cat([x, y], dim=1) if x is not None else y

        # Execute layers.
        for idx in range(self.num_layers):
            x = getattr(self, f'fc{idx}')(x)

        # Update moving average of W.
        if update_emas:
            self.w_avg.copy_(x.detach().mean(dim=0).lerp(
                self.w_avg, self.w_avg_beta))

        # Broadcast and apply truncation.
        x = x.unsqueeze(1).repeat([1, self.num_ws, 1])
        if truncation_psi != 1:
            x[:, :truncation_cutoff] = self.w_avg.lerp(
                x[:, :truncation_cutoff], truncation_psi)
        return x

    def extra_repr(self):
        return f'z_dim={self.z_dim:d}, c_dim={self.c_dim:d}, w_dim={self.w_dim:d}, num_ws={self.num_ws:d}'


#----------------------------------------------------------------------------


@persistence.persistent_class
class SynthesisInput(torch.nn.Module):
    def __init__(
            self,
            w_dim,  # Intermediate latent (W) dimensionality.
            channels,  # Number of output channels.
            size,  # Output spatial size: int or [width, height].
            sampling_rate,  # Output sampling rate.
            bandwidth,  # Output bandwidth.
    ):
        super().__init__()
        self.w_dim = w_dim
        self.channels = channels
        self.size = np.broadcast_to(np.asarray(size), [2])
        self.sampling_rate = sampling_rate
        self.bandwidth = bandwidth

        # Draw random frequencies from uniform 2D disc.
        freqs = torch.randn([self.channels, 2])
        radii = freqs.square().sum(dim=1, keepdim=True).sqrt()
        freqs /= radii * radii.square().exp().pow(0.25)
        freqs *= bandwidth
        phases = torch.rand([self.channels]) - 0.5

        # Setup parameters and buffers.
        self.weight = torch.nn.Parameter(
            torch.randn([self.channels, self.channels]))
        self.affine = FullyConnectedLayer(w_dim,
                                          4,
                                          weight_init=0,
                                          bias_init=[1, 0, 0, 0])
        self.register_buffer('transform', torch.eye(
            3, 3))  # User-specified inverse transform wrt. resulting image.
        self.register_buffer('freqs', freqs)
        self.register_buffer('phases', phases)

    def forward(self, w):
        # Introduce batch dimension.
        transforms = self.transform.unsqueeze(0)  # [batch, row, col]
        freqs = self.freqs.unsqueeze(0)  # [batch, channel, xy]
        phases = self.phases.unsqueeze(0)  # [batch, channel]

        # Apply learned transformation.
        t = self.affine(w)  # t = (r_c, r_s, t_x, t_y)
        t = t / t[:, :2].norm(dim=1,
                              keepdim=True)  # t' = (r'_c, r'_s, t'_x, t'_y)
        m_r = torch.eye(3, device=w.device).unsqueeze(0).repeat(
            [w.shape[0], 1, 1])  # Inverse rotation wrt. resulting image.
        m_r[:, 0, 0] = t[:, 0]  # r'_c
        m_r[:, 0, 1] = -t[:, 1]  # r'_s
        m_r[:, 1, 0] = t[:, 1]  # r'_s
        m_r[:, 1, 1] = t[:, 0]  # r'_c
        m_t = torch.eye(3, device=w.device).unsqueeze(0).repeat(
            [w.shape[0], 1, 1])  # Inverse translation wrt. resulting image.
        m_t[:, 0, 2] = -t[:, 2]  # t'_x
        m_t[:, 1, 2] = -t[:, 3]  # t'_y
        transforms = m_r @ m_t @ transforms  # First rotate resulting image, then translate, and finally apply user-specified transform.

        # Transform frequencies.
        phases = phases + (freqs @ transforms[:, :2, 2:]).squeeze(2)
        freqs = freqs @ transforms[:, :2, :2]

        # Dampen out-of-band frequencies that may occur due to the user-specified transform.
        amplitudes = (1 - (freqs.norm(dim=2) - self.bandwidth) /
                      (self.sampling_rate / 2 - self.bandwidth)).clamp(0, 1)

        # Construct sampling grid.
        theta = torch.eye(2, 3, device=w.device)
        theta[0, 0] = 0.5 * self.size[0] / self.sampling_rate
        theta[1, 1] = 0.5 * self.size[1] / self.sampling_rate
        grids = torch.nn.functional.affine_grid(
            theta.unsqueeze(0), [1, 1, self.size[1], self.size[0]],
            align_corners=False)

        # Compute Fourier features.
        x = (grids.unsqueeze(3) @ freqs.permute(
            0, 2, 1).unsqueeze(1).unsqueeze(2)).squeeze(
                3)  # [batch, height, width, channel]
        x = x + phases.unsqueeze(1).unsqueeze(2)
        x = torch.sin(x * (np.pi * 2))
        x = x * amplitudes.unsqueeze(1).unsqueeze(2)

        # Apply trainable mapping.
        weight = self.weight / np.sqrt(self.channels)
        x = x @ weight.t()

        # Ensure correct shape.
        x = x.permute(0, 3, 1, 2)  # [batch, channel, height, width]
        misc.assert_shape(
            x,
            [w.shape[0], self.channels,
             int(self.size[1]),
             int(self.size[0])])
        return x

    def extra_repr(self):
        return '\n'.join([
            f'w_dim={self.w_dim:d}, channels={self.channels:d}, size={list(self.size)},',
            f'sampling_rate={self.sampling_rate:g}, bandwidth={self.bandwidth:g}'
        ])


#----------------------------------------------------------------------------


@persistence.persistent_class
class SynthesisLayer(torch.nn.Module):
    def __init__(
            self,
            w_dim,  # Intermediate latent (W) dimensionality.
            is_torgb,  # Is this the final ToRGB layer?
            is_critically_sampled,  # Does this layer use critical sampling?
            use_fp16,  # Does this layer use FP16?

            # Input & output specifications.
        in_channels,  # Number of input channels.
            out_channels,  # Number of output channels.
            in_size,  # Input spatial size: int or [width, height].
            out_size,  # Output spatial size: int or [width, height].
            in_sampling_rate,  # Input sampling rate (s).
            out_sampling_rate,  # Output sampling rate (s).
            in_cutoff,  # Input cutoff frequency (f_c).
            out_cutoff,  # Output cutoff frequency (f_c).
            in_half_width,  # Input transition band half-width (f_h).
            out_half_width,  # Output Transition band half-width (f_h).

            # Hyperparameters.
        conv_kernel=3,  # Convolution kernel size. Ignored for final the ToRGB layer.
            filter_size=6,  # Low-pass filter size relative to the lower resolution when up/downsampling.
            lrelu_upsampling=2,  # Relative sampling rate for leaky ReLU. Ignored for final the ToRGB layer.
            use_radial_filters=False,  # Use radially symmetric downsampling filter? Ignored for critically sampled layers.
            conv_clamp=256,  # Clamp the output to [-X, +X], None = disable clamping.
            magnitude_ema_beta=0.999,  # Decay rate for the moving average of input magnitudes.
    ):
        super().__init__()
        self.w_dim = w_dim
        self.is_torgb = is_torgb
        self.is_critically_sampled = is_critically_sampled
        self.use_fp16 = use_fp16
        self.in_channels = in_channels
        self.out_channels = out_channels
        self.in_size = np.broadcast_to(np.asarray(in_size), [2])
        self.out_size = np.broadcast_to(np.asarray(out_size), [2])
        self.in_sampling_rate = in_sampling_rate
        self.out_sampling_rate = out_sampling_rate
        self.tmp_sampling_rate = max(in_sampling_rate, out_sampling_rate) * (
            1 if is_torgb else lrelu_upsampling)
        self.in_cutoff = in_cutoff
        self.out_cutoff = out_cutoff
        self.in_half_width = in_half_width
        self.out_half_width = out_half_width
        self.conv_kernel = 1 if is_torgb else conv_kernel
        self.conv_clamp = conv_clamp
        self.magnitude_ema_beta = magnitude_ema_beta

        # Setup parameters and buffers.
        self.affine = FullyConnectedLayer(self.w_dim,
                                          self.in_channels,
                                          bias_init=1)
        self.weight = torch.nn.Parameter(
            torch.randn([
                self.out_channels, self.in_channels, self.conv_kernel,
                self.conv_kernel
            ]))
        self.bias = torch.nn.Parameter(torch.zeros([self.out_channels]))
        self.register_buffer('magnitude_ema', torch.ones([]))

        # Design upsampling filter.
        self.up_factor = int(
            np.rint(self.tmp_sampling_rate / self.in_sampling_rate))
        assert self.in_sampling_rate * self.up_factor == self.tmp_sampling_rate
        self.up_taps = filter_size * self.up_factor if self.up_factor > 1 and not self.is_torgb else 1
        self.register_buffer(
            'up_filter',
            self.design_lowpass_filter(numtaps=self.up_taps,
                                       cutoff=self.in_cutoff,
                                       width=self.in_half_width * 2,
                                       fs=self.tmp_sampling_rate))

        # Design downsampling filter.
        self.down_factor = int(
            np.rint(self.tmp_sampling_rate / self.out_sampling_rate))
        assert self.out_sampling_rate * self.down_factor == self.tmp_sampling_rate
        self.down_taps = filter_size * self.down_factor if self.down_factor > 1 and not self.is_torgb else 1
        self.down_radial = use_radial_filters and not self.is_critically_sampled
        self.register_buffer(
            'down_filter',
            self.design_lowpass_filter(numtaps=self.down_taps,
                                       cutoff=self.out_cutoff,
                                       width=self.out_half_width * 2,
                                       fs=self.tmp_sampling_rate,
                                       radial=self.down_radial))

        # Compute padding.
        pad_total = (
            self.out_size - 1
        ) * self.down_factor + 1  # Desired output size before downsampling.
        pad_total -= (self.in_size + self.conv_kernel -
                      1) * self.up_factor  # Input size after upsampling.
        pad_total += self.up_taps + self.down_taps - 2  # Size reduction caused by the filters.
        pad_lo = (
            pad_total + self.up_factor
        ) // 2  # Shift sample locations according to the symmetric interpretation (Appendix C.3).
        pad_hi = pad_total - pad_lo
        self.padding = [
            int(pad_lo[0]),
            int(pad_hi[0]),
            int(pad_lo[1]),
            int(pad_hi[1])
        ]

    def forward(self,
                x,
                w,
                noise_mode='random',
                force_fp32=False,
                update_emas=False):
        assert noise_mode in ['random', 'const', 'none']  # unused
        misc.assert_shape(x, [
            None, self.in_channels,
            int(self.in_size[1]),
            int(self.in_size[0])
        ])
        misc.assert_shape(w, [x.shape[0], self.w_dim])

        # Track input magnitude.
        if update_emas:
            with torch.autograd.profiler.record_function(
                    'update_magnitude_ema'):
                magnitude_cur = x.detach().to(torch.float32).square().mean()
                self.magnitude_ema.copy_(
                    magnitude_cur.lerp(self.magnitude_ema,
                                       self.magnitude_ema_beta))
        input_gain = self.magnitude_ema.rsqrt()

        # Execute affine layer.
        styles = self.affine(w)
        if self.is_torgb:
            weight_gain = 1 / np.sqrt(self.in_channels * (self.conv_kernel**2))
            styles = styles * weight_gain

        # Execute modulated conv2d.
        dtype = torch.float16 if (self.use_fp16 and not force_fp32 and
                                  x.device.type == 'cuda') else torch.float32
        x = modulated_conv2d(x=x.to(dtype),
                             w=self.weight,
                             s=styles,
                             padding=self.conv_kernel - 1,
                             demodulate=(not self.is_torgb),
                             input_gain=input_gain)

        # Execute bias, filtered leaky ReLU, and clamping.
        gain = 1 if self.is_torgb else np.sqrt(2)
        slope = 1 if self.is_torgb else 0.2
        x = filtered_lrelu.filtered_lrelu(x=x,
                                          fu=self.up_filter,
                                          fd=self.down_filter,
                                          b=self.bias.to(x.dtype),
                                          up=self.up_factor,
                                          down=self.down_factor,
                                          padding=self.padding,
                                          gain=gain,
                                          slope=slope,
                                          clamp=self.conv_clamp)

        # Ensure correct shape and dtype.
        misc.assert_shape(x, [
            None, self.out_channels,
            int(self.out_size[1]),
            int(self.out_size[0])
        ])
        assert x.dtype == dtype
        return x

    @staticmethod
    def design_lowpass_filter(numtaps, cutoff, width, fs, radial=False):
        assert numtaps >= 1

        # Identity filter.
        if numtaps == 1:
            return None

        # Separable Kaiser low-pass filter.
        if not radial:
            f = scipy.signal.firwin(numtaps=numtaps,
                                    cutoff=cutoff,
                                    width=width,
                                    fs=fs)
            return torch.as_tensor(f, dtype=torch.float32)

        # Radially symmetric jinc-based filter.
        x = (np.arange(numtaps) - (numtaps - 1) / 2) / fs
        r = np.hypot(*np.meshgrid(x, x))
        f = scipy.special.j1(2 * cutoff * (np.pi * r)) / (np.pi * r)
        beta = scipy.signal.kaiser_beta(
            scipy.signal.kaiser_atten(numtaps, width / (fs / 2)))
        w = np.kaiser(numtaps, beta)
        f *= np.outer(w, w)
        f /= np.sum(f)
        return torch.as_tensor(f, dtype=torch.float32)

    def extra_repr(self):
        return '\n'.join([
            f'w_dim={self.w_dim:d}, is_torgb={self.is_torgb},',
            f'is_critically_sampled={self.is_critically_sampled}, use_fp16={self.use_fp16},',
            f'in_sampling_rate={self.in_sampling_rate:g}, out_sampling_rate={self.out_sampling_rate:g},',
            f'in_cutoff={self.in_cutoff:g}, out_cutoff={self.out_cutoff:g},',
            f'in_half_width={self.in_half_width:g}, out_half_width={self.out_half_width:g},',
            f'in_size={list(self.in_size)}, out_size={list(self.out_size)},',
            f'in_channels={self.in_channels:d}, out_channels={self.out_channels:d}'
        ])


#----------------------------------------------------------------------------


@persistence.persistent_class
class SynthesisNetwork(torch.nn.Module):
    def __init__(
            self,
            w_dim,  # Intermediate latent (W) dimensionality.
            img_resolution,  # Output image resolution.
            img_channels,  # Number of color channels.
            channel_base=32768,  # Overall multiplier for the number of channels.
            channel_max=512,  # Maximum number of channels in any layer.
            num_layers=14,  # Total number of layers, excluding Fourier features and ToRGB.
            num_critical=2,  # Number of critically sampled layers at the end.
            first_cutoff=2,  # Cutoff frequency of the first layer (f_{c,0}).
            first_stopband=2**
        2.1,  # Minimum stopband of the first layer (f_{t,0}).
            last_stopband_rel=2**
        0.3,  # Minimum stopband of the last layer, expressed relative to the cutoff.
            margin_size=10,  # Number of additional pixels outside the image.
            output_scale=0.25,  # Scale factor for the output image.
            num_fp16_res=4,  # Use FP16 for the N highest resolutions.
            **layer_kwargs,  # Arguments for SynthesisLayer.
    ):
        super().__init__()
        self.w_dim = w_dim
        self.num_ws = num_layers + 2
        self.img_resolution = img_resolution
        self.img_channels = img_channels
        self.num_layers = num_layers
        self.num_critical = num_critical
        self.margin_size = margin_size
        self.output_scale = output_scale
        self.num_fp16_res = num_fp16_res

        # Geometric progression of layer cutoffs and min. stopbands.
        last_cutoff = self.img_resolution / 2  # f_{c,N}
        last_stopband = last_cutoff * last_stopband_rel  # f_{t,N}
        exponents = np.minimum(
            np.arange(self.num_layers + 1) /
            (self.num_layers - self.num_critical), 1)
        cutoffs = first_cutoff * (last_cutoff /
                                  first_cutoff)**exponents  # f_c[i]
        stopbands = first_stopband * (last_stopband /
                                      first_stopband)**exponents  # f_t[i]

        # Compute remaining layer parameters.
        sampling_rates = np.exp2(
            np.ceil(np.log2(np.minimum(stopbands * 2,
                                       self.img_resolution))))  # s[i]
        half_widths = np.maximum(stopbands,
                                 sampling_rates / 2) - cutoffs  # f_h[i]
        sizes = sampling_rates + self.margin_size * 2
        sizes[-2:] = self.img_resolution
        channels = np.rint(
            np.minimum((channel_base / 2) / cutoffs, channel_max))
        channels[-1] = self.img_channels

        # Construct layers.
        self.input = SynthesisInput(w_dim=self.w_dim,
                                    channels=int(channels[0]),
                                    size=int(sizes[0]),
                                    sampling_rate=sampling_rates[0],
                                    bandwidth=cutoffs[0])
        self.layer_names = []
        for idx in range(self.num_layers + 1):
            prev = max(idx - 1, 0)
            is_torgb = (idx == self.num_layers)
            is_critically_sampled = (idx >=
                                     self.num_layers - self.num_critical)
            use_fp16 = (sampling_rates[idx] *
                        (2**self.num_fp16_res) > self.img_resolution)
            layer = SynthesisLayer(w_dim=self.w_dim,
                                   is_torgb=is_torgb,
                                   is_critically_sampled=is_critically_sampled,
                                   use_fp16=use_fp16,
                                   in_channels=int(channels[prev]),
                                   out_channels=int(channels[idx]),
                                   in_size=int(sizes[prev]),
                                   out_size=int(sizes[idx]),
                                   in_sampling_rate=int(sampling_rates[prev]),
                                   out_sampling_rate=int(sampling_rates[idx]),
                                   in_cutoff=cutoffs[prev],
                                   out_cutoff=cutoffs[idx],
                                   in_half_width=half_widths[prev],
                                   out_half_width=half_widths[idx],
                                   **layer_kwargs)
            name = f'L{idx}_{layer.out_size[0]}_{layer.out_channels}'
            setattr(self, name, layer)
            self.layer_names.append(name)

    def forward(self, ws, **layer_kwargs):
        misc.assert_shape(ws, [None, self.num_ws, self.w_dim])
        ws = ws.to(torch.float32).unbind(dim=1)

        # Execute layers.
        x = self.input(ws[0])
        for name, w in zip(self.layer_names, ws[1:]):
            x = getattr(self, name)(x, w, **layer_kwargs)
        if self.output_scale != 1:
            x = x * self.output_scale

        # Ensure correct shape and dtype.
        misc.assert_shape(x, [
            None, self.img_channels, self.img_resolution, self.img_resolution
        ])
        x = x.to(torch.float32)
        return x

    def extra_repr(self):
        return '\n'.join([
            f'w_dim={self.w_dim:d}, num_ws={self.num_ws:d},',
            f'img_resolution={self.img_resolution:d}, img_channels={self.img_channels:d},',
            f'num_layers={self.num_layers:d}, num_critical={self.num_critical:d},',
            f'margin_size={self.margin_size:d}, num_fp16_res={self.num_fp16_res:d}'
        ])


#----------------------------------------------------------------------------


@persistence.persistent_class
class Generator(torch.nn.Module):
    def __init__(
            self,
            z_dim,  # Input latent (Z) dimensionality.
            c_dim,  # Conditioning label (C) dimensionality.
            w_dim,  # Intermediate latent (W) dimensionality.
            img_resolution,  # Output resolution.
            img_channels,  # Number of output color channels.
            mapping_kwargs={},  # Arguments for MappingNetwork.
            **synthesis_kwargs,  # Arguments for SynthesisNetwork.
    ):
        super().__init__()
        self.z_dim = z_dim
        self.c_dim = c_dim
        self.w_dim = w_dim
        self.img_resolution = img_resolution
        self.img_channels = img_channels
        self.synthesis = SynthesisNetwork(w_dim=w_dim,
                                          img_resolution=img_resolution,
                                          img_channels=img_channels,
                                          **synthesis_kwargs)
        self.num_ws = self.synthesis.num_ws
        self.mapping = MappingNetwork(z_dim=z_dim,
                                      c_dim=c_dim,
                                      w_dim=w_dim,
                                      num_ws=self.num_ws,
                                      **mapping_kwargs)

    def forward(self,
                z,
                c,
                truncation_psi=1,
                truncation_cutoff=None,
                update_emas=False,
                **synthesis_kwargs):
        ws = self.mapping(z,
                          c,
                          truncation_psi=truncation_psi,
                          truncation_cutoff=truncation_cutoff,
                          update_emas=update_emas)
        img = self.synthesis(ws, update_emas=update_emas, **synthesis_kwargs)
        return img


#----------------------------------------------------------------------------