Spaces:
Running
on
Zero
Running
on
Zero
File size: 22,105 Bytes
7f51798 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 |
"""Calculates the Frechet Inception Distance (FID) to evalulate GANs
The FID metric calculates the distance between two distributions of images.
Typically, we have summary statistics (mean & covariance matrix) of one
of these distributions, while the 2nd distribution is given by a GAN.
When run as a stand-alone program, it compares the distribution of
images that are stored as PNG/JPEG at a specified location with a
distribution given by summary statistics (in pickle format).
The FID is calculated by assuming that X_1 and X_2 are the activations of
the pool_3 layer of the inception net for generated samples and real world
samples respectively.
See --help to see further details.
Code apapted from https://github.com/bioinf-jku/TTUR to use PyTorch instead
of Tensorflow
Copyright 2018 Institute of Bioinformatics, JKU Linz
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
"""
import ipdb
import os
from pathlib import Path
from argparse import ArgumentDefaultsHelpFormatter, ArgumentParser
import pyiqa
from pdb import set_trace as st
import json
import numpy as np
import torch
import torchvision.transforms as TF
from PIL import Image
from scipy import linalg
from torch.nn.functional import adaptive_avg_pool2d
import cv2
try:
from tqdm import tqdm
except ImportError:
# If tqdm is not available, provide a mock version of it
def tqdm(x):
return x
from pytorch_fid.inception import InceptionV3
parser = ArgumentParser(formatter_class=ArgumentDefaultsHelpFormatter)
parser.add_argument('--batch-size', type=int, default=100,
help='Batch size to use')
parser.add_argument('--reso', type=int, default=128,
help='Batch size to use')
parser.add_argument('--num-workers', type=int, default=8,
help=('Number of processes to use for data loading. '
'Defaults to `min(8, num_cpus)`'))
parser.add_argument('--device', type=str, default=None,
help='Device to use. Like cuda, cuda:0 or cpu')
parser.add_argument('--dataset', type=str, default='omni',
help='Device to use. Like cuda, cuda:0 or cpu')
parser.add_argument('--dims', type=int, default=2048,
choices=list(InceptionV3.BLOCK_INDEX_BY_DIM),
help=('Dimensionality of Inception features to use. '
'By default, uses pool3 features'))
parser.add_argument('--save-stats', action='store_true',
help=('Generate an npz archive from a directory of samples. '
'The first path is used as input and the second as output.'))
parser.add_argument('path', type=str, nargs=2,
help=('Paths to the generated images or '
'to .npz statistic files'))
IMAGE_EXTENSIONS = {'bmp', 'jpg', 'jpeg', 'pgm', 'png', 'ppm',
'tif', 'tiff', 'webp'}
class ImagePathDataset(torch.utils.data.Dataset):
def __init__(self, files, reso,transforms=None):
self.files = files
self.transforms = transforms
self.reso=reso
def __len__(self):
return len(self.files)
def __getitem__(self, i):
path = self.files[i]
#ipdb.set_trace()
try:
img=cv2.imread(path)
#if img.mean(-1)>254.9:
#img[np.where(img.mean(-1)>254.9)]=0
img=cv2.resize(img,(self.reso,self.reso),interpolation=cv2.INTER_CUBIC)
img=cv2.cvtColor(img,cv2.COLOR_BGR2RGB)
except:
img=cv2.imread(self.files[0])
#if img.mean(-1)>254.9:
#img[np.where(img.mean(-1)>254.9)]=0
img=cv2.resize(img,(self.reso,self.reso),interpolation=cv2.INTER_CUBIC)
img=cv2.cvtColor(img,cv2.COLOR_BGR2RGB)
print(path)
#img = Image.open(path).convert('RGB')
if self.transforms is not None:
img = self.transforms(img)
#ipdb.set_trace()
return img
def get_activations(files, model, batch_size=50, dims=2048, device='cpu',
num_workers=16,reso=128):
"""Calculates the activations of the pool_3 layer for all images.
Params:
-- files : List of image files paths
-- model : Instance of inception model
-- batch_size : Batch size of images for the model to process at once.
Make sure that the number of samples is a multiple of
the batch size, otherwise some samples are ignored. This
behavior is retained to match the original FID score
implementation.
-- dims : Dimensionality of features returned by Inception
-- device : Device to run calculations
-- num_workers : Number of parallel dataloader workers
Returns:
-- A numpy array of dimension (num images, dims) that contains the
activations of the given tensor when feeding inception with the
query tensor.
"""
model.eval()
if batch_size > len(files):
print(('Warning: batch size is bigger than the data size. '
'Setting batch size to data size'))
batch_size = len(files)
dataset = ImagePathDataset(files, reso,transforms=TF.ToTensor())
dataloader = torch.utils.data.DataLoader(dataset,
batch_size=batch_size,
shuffle=False,
drop_last=False,
num_workers=num_workers)
pred_arr = np.empty((len(files), dims))
start_idx = 0
for batch in tqdm(dataloader):
batch = batch.to(device)
#ipdb.set_trace()
with torch.no_grad():
pred = model(batch)[0]
# If model output is not scalar, apply global spatial average pooling.
# This happens if you choose a dimensionality not equal 2048.
if pred.size(2) != 1 or pred.size(3) != 1:
pred = adaptive_avg_pool2d(pred, output_size=(1, 1))
#ipdb.set_trace()
pred = pred.squeeze(3).squeeze(2).cpu().numpy()
pred_arr[start_idx:start_idx + pred.shape[0]] = pred
start_idx = start_idx + pred.shape[0]
return pred_arr
def calculate_frechet_distance(mu1, sigma1, mu2, sigma2, eps=1e-6):
"""Numpy implementation of the Frechet Distance.
The Frechet distance between two multivariate Gaussians X_1 ~ N(mu_1, C_1)
and X_2 ~ N(mu_2, C_2) is
d^2 = ||mu_1 - mu_2||^2 + Tr(C_1 + C_2 - 2*sqrt(C_1*C_2)).
Stable version by Dougal J. Sutherland.
Params:
-- mu1 : Numpy array containing the activations of a layer of the
inception net (like returned by the function 'get_predictions')
for generated samples.
-- mu2 : The sample mean over activations, precalculated on an
representative data set.
-- sigma1: The covariance matrix over activations for generated samples.
-- sigma2: The covariance matrix over activations, precalculated on an
representative data set.
Returns:
-- : The Frechet Distance.
"""
#ipdb.set_trace()
mu1 = np.atleast_1d(mu1)
mu2 = np.atleast_1d(mu2)
sigma1 = np.atleast_2d(sigma1)
sigma2 = np.atleast_2d(sigma2)
assert mu1.shape == mu2.shape, \
'Training and test mean vectors have different lengths'
assert sigma1.shape == sigma2.shape, \
'Training and test covariances have different dimensions'
diff = mu1 - mu2
# Product might be almost singular
covmean, _ = linalg.sqrtm(sigma1.dot(sigma2), disp=False)
if not np.isfinite(covmean).all():
msg = ('fid calculation produces singular product; '
'adding %s to diagonal of cov estimates') % eps
print(msg)
offset = np.eye(sigma1.shape[0]) * eps
covmean = linalg.sqrtm((sigma1 + offset).dot(sigma2 + offset))
# Numerical error might give slight imaginary component
if np.iscomplexobj(covmean):
if not np.allclose(np.diagonal(covmean).imag, 0, atol=1e-3):
m = np.max(np.abs(covmean.imag))
raise ValueError('Imaginary component {}'.format(m))
covmean = covmean.real
tr_covmean = np.trace(covmean)
return (diff.dot(diff) + np.trace(sigma1)
+ np.trace(sigma2) - 2 * tr_covmean)
def calculate_activation_statistics(files, model, batch_size=50, dims=2048,
device='cpu', num_workers=1,reso=128):
"""Calculation of the statistics used by the FID.
Params:
-- files : List of image files paths
-- model : Instance of inception model
-- batch_size : The images numpy array is split into batches with
batch size batch_size. A reasonable batch size
depends on the hardware.
-- dims : Dimensionality of features returned by Inception
-- device : Device to run calculations
-- num_workers : Number of parallel dataloader workers
Returns:
-- mu : The mean over samples of the activations of the pool_3 layer of
the inception model.
-- sigma : The covariance matrix of the activations of the pool_3 layer of
the inception model.
"""
act = get_activations(files, model, batch_size, dims, device, num_workers,reso=reso)
mu = np.mean(act, axis=0)
sigma = np.cov(act, rowvar=False)
return mu, sigma
def compute_statistics_of_path(path, model, batch_size, dims, device,
num_workers=1,reso=512,dataset='gso'):
basepath="/mnt/sfs-common/yslan/Repo/3dgen/FID-KID-Outputdir-objv/metrics/fid/gso_gt"
# basepath="/mnt/sfs-common/yslan/Repo/3dgen/FID-KID-Outputdir-objv/metrics/fid-withtop/gso_gt"
# basepath="/mnt/sfs-common/yslan/Repo/3dgen/FID-KID-Outputdir-free3d/metrics/fid-withtop/gso_gt"
# basepath="/mnt/sfs-common/yslan/Repo/3dgen/FID-KID-Outputdir-/metrics/fid-withtop/gso_gt"
os.makedirs(os.path.join(basepath), exist_ok=True)
objv_dataset = '/mnt/sfs-common/yslan/Dataset/Obajverse/chunk-jpeg-normal/bs_16_fixsave3/170K/512/'
dataset_json = os.path.join(objv_dataset, 'dataset.json')
with open(dataset_json, 'r') as f:
dataset_json = json.load(f)
# all_objs = dataset_json['Animals'][::3][:6250]
all_objs = dataset_json['Animals'][::3][1100:2200]
all_objs = all_objs[:600][:]
# all_objs = all_objs[100:600]
# all_objs = all_objs[:500]
# if 'shapenet' in dataset:
# if 'shapenet' in dataset:
try:
try:
m=np.load(os.path.join(basepath,path.split('/')[-1]+str(reso)+'mean.npy'))
s=np.load(os.path.join(basepath,path.split('/')[-1]+str(reso)+'std.npy'))
print('loading_dataset',dataset)
except:
files=[]
# ! load instances for I23D inference
# for obj_folder in tqdm(sorted(os.listdir(path))):
# for idx in range(0,25):
# img_name = os.path.join(path, obj_folder, 'rgba', f'{idx:03}.png')
# files.append(img_name)
# ! free3d rendering
# for obj_folder in tqdm(sorted(os.listdir(path))):
# for idx in range(0,25):
# # img_name = os.path.join(path, obj_folder, 'rgba', f'{idx:03}.png')
# img_name = os.path.join(path, obj_folder, 'render_mvs_25', 'model', f'{idx:03}.png')
# files.append(img_name)
# ! objv loading
for obj_folder in tqdm(all_objs):
obj_folder = obj_folder[:-2] # to load 3 chunks
for batch in range(1,4):
for idx in range(8):
files.append(os.path.join(path, obj_folder, str(batch), f'{idx}.jpg'))
# for name in os.listdir(path):
# #ipdb.set_trace()
# # if name not in false1: #and name not in false2 and name not in false3:
# if name in false1: #and name not in false2 and name not in false3:
# img=os.path.join(path,name,'rgb')
# #ipdb.set_trace()
# files = files+sorted([os.path.join(img, idd) for idd in os.listdir(img) if idd.endswith('.png')])
if len(files) > 50000:
files = files[:50000]
break
#files=files[:5]
m, s = calculate_activation_statistics(files, model, batch_size,
dims, device, num_workers,reso=reso)
path = Path(path)
# ipdb.set_trace()
np.save(os.path.join(basepath,path.name+str(reso)+'mean'), m)
np.save(os.path.join(basepath,path.name+str(reso)+'std'), s)
except Exception as e:
print(f'{dataset} failed, ', e)
return m, s
def compute_statistics_of_path_new(path, model, batch_size, dims, device,
num_workers=1,reso=128,dataset='omni'):
# basepath='/mnt/lustre/yslan/logs/nips23/LSGM/cldm/cmetric/shapenet-outs/fid'+str(reso)+'test'+dataset
# basepath='/mnt/sfs-common/yslan/Repo/3dgen/FID-KID-Outputdir/metrics/fid/'+str(reso)+dataset
# basepath='/mnt/sfs-common/yslan/Repo/3dgen/FID-KID-Outputdir-free3d/metrics/fid/'+str(reso)+dataset
# basepath='/mnt/sfs-common/yslan/Repo/3dgen/FID-KID-Outputdir-objv/metrics/fid/'+str(reso)+dataset
# basepath='/mnt/sfs-common/yslan/Repo/3dgen/FID-KID-Outputdir-objv/metrics/fid-subset/'+str(reso)+dataset
basepath='/mnt/sfs-common/yslan/Repo/3dgen/FID-KID-Outputdir-objv/metrics/fid/'+str(reso)+dataset
# basepath='/mnt/sfs-common/yslan/Repo/3dgen/FID-KID-Outputdir-objv/metrics/fid-withtop/'+str(reso)+dataset
# basepath='/mnt/sfs-common/yslan/Repo/3dgen/FID-KID-Outputdir-free3d/metrics/fid/'+str(reso)+dataset
objv_dataset = '/mnt/sfs-common/yslan/Dataset/Obajverse/chunk-jpeg-normal/bs_16_fixsave3/170K/512/'
dataset_json = os.path.join(objv_dataset, 'dataset.json')
with open(dataset_json, 'r') as f:
dataset_json = json.load(f)
# all_objs = dataset_json['Animals'][::3][:6250]
all_objs = dataset_json['Animals'][::3][1100:2200]
all_objs = all_objs[:600]
os.makedirs(os.path.join(basepath), exist_ok=True)
sample_name=path.split('/')[-1]
try:
try:
# ipdb.set_trace()
m=np.load(os.path.join(basepath,sample_name+str(reso)+'mean.npy'))
s=np.load(os.path.join(basepath,sample_name+str(reso)+'std.npy'))
print('loading_sample')
except:
files=[]
# for name in os.listdir(path):
# img=os.path.join(path,name)
# files.append(img) # ! directly append
# for loading gso-like folder
# st()
# for obj_folder in sorted(os.listdir(path)):
# if obj_folder == 'runs':
# continue
# if not os.path.isdir(os.path.join(path, obj_folder)):
# continue
# for idx in [0]:
# for i in range(24):
# if 'GA' in path:
# img=os.path.join(path,obj_folder, str(idx),f'sample-0-{i}.jpg')
# else:
# img=os.path.join(path,obj_folder, str(idx),f'{i}.jpg')
# # ipdb.set_trace()
# files.append(img)
for obj_folder in tqdm(all_objs):
obj_folder = '/'.join(obj_folder.split('/')[1:])
for idx in range(24):
# files.append(os.path.join(path, obj_folder, f'{idx}.jpg'))
if 'Lara' in path:
files.append(os.path.join(path, '/'.join(obj_folder.split('/')[:-1]), '0.jpg', f'{idx}.jpg'))
elif 'GA' in path:
files.append(os.path.join(path, '/'.join(obj_folder.split('/')[:-1]), '0', f'sample-0-{idx}.jpg'))
elif 'scale3d' in path:
files.append(os.path.join(path, '/'.join(obj_folder.split('/')[:-1]), '1', f'{idx}.png'))
elif 'LRM' in path:
files.append(os.path.join(path, '/'.join(obj_folder.split('/')[:-1]), '0', f'{idx}.jpg'))
else:
files.append(os.path.join(path, obj_folder, '0', f'{idx}.jpg'))
files=files[:50000]
m, s = calculate_activation_statistics(files, model, batch_size,
dims, device, num_workers,reso=reso)
path = Path(path)
np.save(os.path.join(basepath,sample_name+str(reso)+'mean'), m)
np.save(os.path.join(basepath,sample_name+str(reso)+'std'), s)
except Exception as e:
print('error sample image', e)
#ipdb.set_trace()
return m, s
musiq_metric = pyiqa.create_metric('musiq')
def calculate_fid_given_paths(paths, batch_size, device, dims, num_workers=1,reso=128,dataset='omni'):
"""Calculates the FID of two paths"""
# for p in paths:
# if not os.path.exists(p):
# raise RuntimeError('Invalid path: %s' % p)
# block_idx = InceptionV3.BLOCK_INDEX_BY_DIM[dims]
# model = InceptionV3([block_idx]).to(device)
# fid_metric = pyiqa.create_metric('fid')
# fid_value = fid_metric(paths[0], paths[1])
all_musiq = []
path = paths[1]
objv_dataset = '/mnt/sfs-common/yslan/Dataset/Obajverse/chunk-jpeg-normal/bs_16_fixsave3/170K/512/'
dataset_json = os.path.join(objv_dataset, 'dataset.json')
with open(dataset_json, 'r') as f:
dataset_json = json.load(f)
# all_objs = dataset_json['Animals'][::3][:6250]
all_objs = dataset_json['Animals'][::3][1100:2200]
all_objs = all_objs[:600]
sample_name=path.split('/')[-1]
files=[]
for obj_folder in tqdm(all_objs):
obj_folder = '/'.join(obj_folder.split('/')[1:])
for idx in range(24):
# files.append(os.path.join(path, obj_folder, f'{idx}.jpg'))
if 'Lara' in path:
files.append(os.path.join(path, '/'.join(obj_folder.split('/')[:-1]), '0.jpg', f'{idx}.jpg'))
elif 'GA' in path:
files.append(os.path.join(path, '/'.join(obj_folder.split('/')[:-1]), '0', f'sample-0-{idx}.jpg'))
elif 'LRM' in path:
files.append(os.path.join(path, '/'.join(obj_folder.split('/')[:-1]), '0', f'{idx}.jpg'))
elif 'scale3d' in path:
files.append(os.path.join(path, '/'.join(obj_folder.split('/')[:-1]), '1', f'{idx}.png'))
else:
files.append(os.path.join(path, obj_folder, '0', f'{idx}.jpg'))
# for file in tqdm(os.listdir(str(paths[1]))[:]):
for file in tqdm(files):
if os.path.exists(file):
# musiq_value = musiq_metric(os.path.join(paths[1], file))
musiq_value = musiq_metric(os.path.join(file))
all_musiq.append(musiq_value)
musiq_value = sum(all_musiq) / len(all_musiq)
# m1, s1 = compute_statistics_of_path(paths[0], model, batch_size, # ! GT data
# dims, device, num_workers,reso=reso,dataset=dataset)
# # ipdb.set_trace()
# m2, s2 = compute_statistics_of_path_new(paths[1], model, batch_size, # ! generated data
# dims, device, num_workers,reso=reso,dataset=dataset)
# fid_value = calculate_frechet_distance(m1, s1, m2, s2)
# return fid_value
return musiq_value
def save_fid_stats(paths, batch_size, device, dims, num_workers=1):
"""Calculates the FID of two paths"""
# if not os.path.exists(paths[0]):
# raise RuntimeError('Invalid path: %s' % paths[0])
# if os.path.exists(paths[1]):
# raise RuntimeError('Existing output file: %s' % paths[1])
block_idx = InceptionV3.BLOCK_INDEX_BY_DIM[dims]
model = InceptionV3([block_idx]).to(device)
print(f"Saving statistics for {paths[0]}")
m1, s1 = compute_statistics_of_path(paths[0], model, batch_size,
dims, device, num_workers)
np.savez_compressed(paths[1], mu=m1, sigma=s1)
def main():
args = parser.parse_args()
if args.device is None:
device = torch.device('cuda' if (torch.cuda.is_available()) else 'cpu')
else:
device = torch.device(args.device)
if args.num_workers is None:
try:
num_cpus = len(os.sched_getaffinity(0))
except AttributeError:
# os.sched_getaffinity is not available under Windows, use
# os.cpu_count instead (which may not return the *available* number
# of CPUs).
num_cpus = os.cpu_count()
num_workers = min(num_cpus, 8) if num_cpus is not None else 0
else:
num_workers = args.num_workers
if args.save_stats:
save_fid_stats(args.path, args.batch_size, device, args.dims, num_workers)
return
#ipdb.set_trace()
fid_value = calculate_fid_given_paths(args.path,
args.batch_size,
device,
args.dims,
num_workers,args.reso,args.dataset)
print(f'{args.dataset} FID: ', fid_value)
if __name__ == '__main__':
main()
|