File size: 6,396 Bytes
7f51798
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
import torch
import torch.nn as nn
import numpy as np

import math
from einops import rearrange
from vit.vision_transformer import MemEffAttention, Attention
# from xformers.triton import FusedLayerNorm as LayerNorm
from torch.nn import LayerNorm
from xformers.components.feedforward import fused_mlp
# from xformers.components.feedforward import mlp
from xformers.components.activations import build_activation, Activation


class PositionalEncoding(nn.Module):

    def __init__(self, num_octaves=8, start_octave=0):
        super().__init__()
        self.num_octaves = num_octaves
        self.start_octave = start_octave

    def forward(self, coords, rays=None):
        embed_fns = []
        batch_size, num_points, dim = coords.shape

        octaves = torch.arange(self.start_octave,
                               self.start_octave + self.num_octaves)
        octaves = octaves.float().to(coords)
        multipliers = 2**octaves * math.pi
        coords = coords.unsqueeze(-1)
        while len(multipliers.shape) < len(coords.shape):
            multipliers = multipliers.unsqueeze(0)

        scaled_coords = coords * multipliers

        sines = torch.sin(scaled_coords).reshape(batch_size, num_points,
                                                 dim * self.num_octaves)
        cosines = torch.cos(scaled_coords).reshape(batch_size, num_points,
                                                   dim * self.num_octaves)

        result = torch.cat((sines, cosines), -1)
        return result


class RayEncoder(nn.Module):

    def __init__(self,
                 pos_octaves=8,
                 pos_start_octave=0,
                 ray_octaves=4,
                 ray_start_octave=0):
        super().__init__()
        self.pos_encoding = PositionalEncoding(num_octaves=pos_octaves,
                                               start_octave=pos_start_octave)
        self.ray_encoding = PositionalEncoding(num_octaves=ray_octaves,
                                               start_octave=ray_start_octave)

    def forward(self, pos, rays):
        if len(rays.shape) == 4:
            batchsize, height, width, dims = rays.shape
            pos_enc = self.pos_encoding(pos.unsqueeze(1))
            pos_enc = pos_enc.view(batchsize, pos_enc.shape[-1], 1, 1)
            pos_enc = pos_enc.repeat(1, 1, height, width)
            rays = rays.flatten(1, 2)

            ray_enc = self.ray_encoding(rays)
            ray_enc = ray_enc.view(batchsize, height, width, ray_enc.shape[-1])
            ray_enc = ray_enc.permute((0, 3, 1, 2))
            x = torch.cat((pos_enc, ray_enc), 1)
        else:
            pos_enc = self.pos_encoding(pos)
            ray_enc = self.ray_encoding(rays)
            x = torch.cat((pos_enc, ray_enc), -1)

        return x


# Transformer implementation based on ViT
# https://github.com/lucidrains/vit-pytorch/blob/main/vit_pytorch/vit.py


class PreNorm(nn.Module):

    def __init__(self, dim, fn):
        super().__init__()
        self.norm = LayerNorm(dim)
        self.fn = fn

    def forward(self, x, **kwargs):
        return self.fn(self.norm(x), **kwargs)


class FeedForward(nn.Module):

    def __init__(self, dim, hidden_dim, dropout=0.):
        super().__init__()
        self.net = nn.Sequential(nn.Linear(dim, hidden_dim), nn.GELU(),
                                 nn.Dropout(dropout),
                                 nn.Linear(hidden_dim,
                                           dim), nn.Dropout(dropout))

    def forward(self, x):
        return self.net(x)


# class Attention(nn.Module):
#     def __init__(self, dim, heads=8, dim_head=64, dropout=0., selfatt=True, kv_dim=None):
#         super().__init__()
#         inner_dim = dim_head * heads
#         project_out = not (heads == 1 and dim_head == dim)

#         self.heads = heads
#         self.scale = dim_head ** -0.5

#         self.attend = nn.Softmax(dim=-1)
#         if selfatt:
#             self.to_qkv = nn.Linear(dim, inner_dim * 3, bias=False)
#         else:
#             self.to_q = nn.Linear(dim, inner_dim, bias=False)
#             self.to_kv = nn.Linear(kv_dim, inner_dim * 2, bias=False)

#         self.to_out = nn.Sequential(
#             nn.Linear(inner_dim, dim),
#             nn.Dropout(dropout)
#         ) if project_out else nn.Identity()

#     def forward(self, x, z=None):
#         if z is None:
#             qkv = self.to_qkv(x).chunk(3, dim=-1)
#         else:
#             q = self.to_q(x)
#             k, v = self.to_kv(z).chunk(2, dim=-1)
#             qkv = (q, k, v)

#         q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = self.heads), qkv)

#         dots = torch.matmul(q, k.transpose(-1, -2)) * self.scale

#         attn = self.attend(dots)

#         out = torch.matmul(attn, v)
#         out = rearrange(out, 'b h n d -> b n (h d)')
#         return self.to_out(out)


class Transformer(nn.Module):

    def __init__(self,
                 dim,
                 depth,
                 heads,
                 mlp_dim,
                 dropout=0.,
                 selfatt=True,
                 kv_dim=None, 
                 no_flash_op=False,):
        super().__init__()

        # if no_flash_op:
        #     attn_cls = Attention # raw torch attention
        # else:
        attn_cls = MemEffAttention

        self.layers = nn.ModuleList([])
        for _ in range(depth):
            self.layers.append(
                nn.ModuleList([
                    PreNorm(dim,
                            attn_cls(
                                dim,
                                num_heads=heads,
                                qkv_bias=True,
                                qk_norm=True, # as in vit-22B
                                no_flash_op=no_flash_op, 
                            )),
                    PreNorm(
                        dim,
                        fused_mlp.FusedMLP(dim,
                        # mlp.MLP(dim,
                                           hidden_layer_multiplier=mlp_dim //
                                           dim,
                                           dropout=dropout,
                                           activation=Activation.GeLU))
                ]))

    def forward(self, x):
        for attn, ff in self.layers: # type: ignore
            x = attn(x) + x
            x = ff(x) + x
        return x