Spaces:
Running
on
Zero
Running
on
Zero
File size: 45,199 Bytes
7f51798 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 |
"""
https://github.com/CompVis/stable-diffusion/blob/21f890f9da3cfbeaba8e2ac3c425ee9e998d5229/ldm/models/diffusion/ddpm.py#L30
"""
import copy
import functools
import random
import json
import os
from pathlib import Path
from pdb import set_trace as st
from typing import Any
from click import prompt
import einops
import blobfile as bf
import imageio
import numpy as np
import torch as th
import torch.distributed as dist
import torchvision
from PIL import Image
from torch.nn.parallel.distributed import DistributedDataParallel as DDP
from torch.optim import AdamW
from torch.utils.tensorboard.writer import SummaryWriter
from tqdm import tqdm
from guided_diffusion import dist_util, logger
from guided_diffusion.fp16_util import MixedPrecisionTrainer
from guided_diffusion.nn import update_ema
from guided_diffusion.resample import LossAwareSampler, UniformSampler
# from .train_util import TrainLoop3DRec
from guided_diffusion.train_util import (TrainLoop, calc_average_loss,
find_ema_checkpoint,
find_resume_checkpoint,
get_blob_logdir, log_loss_dict,
log_rec3d_loss_dict,
parse_resume_step_from_filename)
from guided_diffusion.gaussian_diffusion import ModelMeanType
from ldm.modules.encoders.modules import FrozenClipImageEmbedder, TextEmbedder, FrozenCLIPTextEmbedder, FrozenOpenCLIPImagePredictionEmbedder, FrozenOpenCLIPImageEmbedder
import dnnlib
from dnnlib.util import requires_grad
from dnnlib.util import calculate_adaptive_weight
from ..train_util_diffusion import TrainLoop3DDiffusion
from ..cvD.nvsD_canoD import TrainLoop3DcvD_nvsD_canoD
from guided_diffusion.continuous_diffusion_utils import get_mixed_prediction, different_p_q_objectives, kl_per_group_vada, kl_balancer
# from .train_util_diffusion_lsgm_noD_joint import TrainLoop3DDiffusionLSGMJointnoD # joint diffusion and rec class
# from .controlLDM import TrainLoop3DDiffusionLSGM_Control # joint diffusion and rec class
from .train_util_diffusion_lsgm_noD_joint import TrainLoop3DDiffusionLSGMJointnoD # joint diffusion and rec class
__conditioning_keys__ = {
'concat': 'c_concat',
'crossattn': 'c_crossattn',
'adm': 'y'
}
def disabled_train(self, mode=True):
"""Overwrite model.train with this function to make sure train/eval mode
does not change anymore."""
return self
class TrainLoop3DDiffusionLSGM_crossattn(TrainLoop3DDiffusionLSGMJointnoD):
def __init__(self,
*,
rec_model,
denoise_model,
diffusion,
sde_diffusion,
control_model,
control_key,
only_mid_control,
loss_class,
data,
eval_data,
batch_size,
microbatch,
lr,
ema_rate,
log_interval,
eval_interval,
save_interval,
resume_checkpoint,
resume_cldm_checkpoint=None,
use_fp16=False,
fp16_scale_growth=0.001,
schedule_sampler=None,
weight_decay=0,
lr_anneal_steps=0,
iterations=10001,
ignore_resume_opt=False,
freeze_ae=False,
denoised_ae=True,
triplane_scaling_divider=10,
use_amp=False,
diffusion_input_size=224,
normalize_clip_encoding=False,
scale_clip_encoding=1.0,
cfg_dropout_prob=0.,
cond_key='img_sr',
use_eos_feature=False,
compile=False,
**kwargs):
super().__init__(rec_model=rec_model,
denoise_model=denoise_model,
diffusion=diffusion,
sde_diffusion=sde_diffusion,
control_model=control_model,
control_key=control_key,
only_mid_control=only_mid_control,
loss_class=loss_class,
data=data,
eval_data=eval_data,
batch_size=batch_size,
microbatch=microbatch,
lr=lr,
ema_rate=ema_rate,
log_interval=log_interval,
eval_interval=eval_interval,
save_interval=save_interval,
resume_checkpoint=resume_checkpoint,
resume_cldm_checkpoint=resume_cldm_checkpoint,
use_fp16=use_fp16,
fp16_scale_growth=fp16_scale_growth,
schedule_sampler=schedule_sampler,
weight_decay=weight_decay,
lr_anneal_steps=lr_anneal_steps,
iterations=iterations,
ignore_resume_opt=ignore_resume_opt,
freeze_ae=freeze_ae,
denoised_ae=denoised_ae,
triplane_scaling_divider=triplane_scaling_divider,
use_amp=use_amp,
diffusion_input_size=diffusion_input_size,
compile=compile,
**kwargs)
self.conditioning_key = 'c_crossattn'
self.cond_key = cond_key
self.instantiate_cond_stage(normalize_clip_encoding,
scale_clip_encoding, cfg_dropout_prob,
use_eos_feature)
requires_grad(self.rec_model, False)
self.rec_model.eval()
# self.normalize_clip_encoding = normalize_clip_encoding
# self.cfg_dropout_prob = cfg_dropout_prob
def instantiate_cond_stage(self, normalize_clip_encoding,
scale_clip_encoding, cfg_dropout_prob,
use_eos_feature):
# https://github.com/CompVis/stable-diffusion/blob/21f890f9da3cfbeaba8e2ac3c425ee9e998d5229/ldm/models/diffusion/ddpm.py#L509C1-L509C46
# self.cond_stage_model.train = disabled_train # type: ignore
if self.cond_key == 'caption':
self.cond_txt_model = TextEmbedder(dropout_prob=cfg_dropout_prob,
use_eos_feature=use_eos_feature)
elif self.cond_key == 'img':
self.cond_img_model = FrozenOpenCLIPImagePredictionEmbedder(
1, 1,
FrozenOpenCLIPImageEmbedder(freeze=True,
device=dist_util.dev(),
init_device=dist_util.dev()))
else: # zero-shot Text to 3D using normalized clip latent
self.cond_stage_model = FrozenClipImageEmbedder(
'ViT-L/14',
dropout_prob=cfg_dropout_prob,
normalize_encoding=normalize_clip_encoding,
scale_clip_encoding=scale_clip_encoding)
self.cond_stage_model.freeze()
self.cond_txt_model = FrozenCLIPTextEmbedder(
dropout_prob=cfg_dropout_prob,
scale_clip_encoding=scale_clip_encoding)
self.cond_txt_model.freeze()
@th.no_grad()
def get_c_input(self,
batch,
bs=None,
use_text=False,
prompt="",
force_drop_ids=None,
*args,
**kwargs):
if use_text:
cond_inp = prompt
else:
if 'caption' in self.cond_key: # support caption-img
cond_inp = batch['caption']
else:
cond_inp = batch[self.cond_key]
# if bs is not None:
# cond_inp = cond_inp[:bs]
# using clip to transform control to tokens for crossattn
control = None
if 'caption' in self.cond_key:
c = self.cond_txt_model(
cond_inp,
train=self.ddpm_model.training,
force_drop_ids=force_drop_ids,
) # ! SD training text condition injection layer
if bs is None: # duplicated sample
if c.shape[0] != batch['c'].shape[0]:
c = th.repeat_interleave(c,
batch['c'].shape[0] // c.shape[0],
dim=0)
else:
assert c.shape[0] == bs
# st()
# if 'img' in self.cond_key:
# ! later
# if 'img' in batch:
# control = batch['img'] + 0.02 * th.randn_like(
# batch['img']) # follow SVD?
elif self.cond_key == 'img':
c = self.cond_img_model(cond_inp)
# control = batch['img']
control = batch['img'] + 0.02 * th.randn_like(
batch['img']) # follow SVD?
else: # zero shot
if use_text: # for test
assert prompt != ""
c = self.cond_txt_model.encode(prompt) # ! for test
else:
cond_inp = cond_inp.to(
memory_format=th.contiguous_format).float()
c = self.cond_stage_model(cond_inp) # BS 768
# if c.shape[0] < batch['img_to_encoder'].shape[0]:
# c = th.repeat_interleave(c, batch['img_to_encoder'].shape[0]//c.shape[0], dim=0)
# return dict(c_concat=[control])
# return dict(c_crossattn=c, c_concat=batch['img'])
# if self.cond_key == 'img':
# return dict(c_crossattn=c, c_concat=control)
return dict(c_crossattn=c)
# else:
# return dict(c_crossattn=c)
# return dict(__conditioning_keys__[self.cond_key]=)
# return {self.conditioning_key: [c], 'c_concat': [cond_inp]}
# return {self.conditioning_key: c, 'c_concat': [cond_inp]}
# TODO, merge the APIs
def apply_model_inference(self, x_noisy, t, c, model_kwargs={}):
pred_params = self.ddp_ddpm_model(x_noisy,
timesteps=t,
**{
**model_kwargs, 'context':
c['c_crossattn'],
'hint':
c.get('c_concat', None)
})
return pred_params
def apply_model(self, p_sample_batch, cond, model_kwargs={}):
return super().apply_model(
p_sample_batch,
**{
**model_kwargs, 'context': cond['c_crossattn'],
'hint': cond.get('c_concat', None)
# **cond,
})
def run_step(self, batch, step='ldm_step'):
# if step == 'diffusion_step_rec':
if step == 'ldm_step':
self.ldm_train_step(batch)
# if took_step_ddpm:
# self._update_cldm_ema()
self._anneal_lr()
self.log_step()
def run_loop(self):
# eval camera
camera = th.load('eval_pose.pt', map_location=dist_util.dev())
while (not self.lr_anneal_steps
or self.step + self.resume_step < self.lr_anneal_steps):
# let all processes sync up before starting with a new epoch of training
# dist_util.synchronize()
batch = next(self.data)
self.run_step(batch, step='ldm_step')
if self.step % self.log_interval == 0 and dist_util.get_rank(
) == 0:
try:
out = logger.dumpkvs()
# * log to tensorboard
for k, v in out.items():
self.writer.add_scalar(f'Loss/{k}', v,
self.step + self.resume_step)
except Exception as e:
continue # no storage
# if self.step % self.eval_interval == 0 and self.step != 0:
# st()
if self.step % self.eval_interval == 0:
# if self.step % self.eval_interval == 0:
if dist_util.get_rank() == 0:
# self.eval_ddpm_sample()
# self.eval_cldm(use_ddim=True, unconditional_guidance_scale=7.5, prompt="") # during training, use image as condition
if self.cond_key == 'caption':
prompt_list = [
# "a voxelized dog",
# "a cute toy cat",
'Yellow rubber duck',
# "a blue plastic chair.",
# "An Eiffel Tower.",
# "A bowl of food.",
# "An engineer.",
# 'A bowl of vegetables',
# 'A birthday cupcake',
# 'A chair that looks like an avocado',
]
self.eval_cldm(
# use_ddim=False,
# prompt="a voxelized dog",
# prompt="a blue plastic chair.",
# prompt="An Eiffel Tower.",
# prompt="A bowl of food.",
# prompt="An engineer.",
# prompt='A bowl of vegetables',
# prompt='A birthday cupcake',
prompt=prompt_list[random.randint(0,len(prompt_list)-1)],
use_train_trajectory=False,
camera=camera) # fix condition bug first
else:
# i23d
self.eval_cldm(
use_train_trajectory=False,
camera=camera) # fix condition bug first
th.cuda.empty_cache()
dist_util.synchronize()
if self.step % self.save_interval == 0 and self.step != 0:
# if self.step % self.save_interval == 0:
self.save(self.mp_trainer, self.mp_trainer.model_name)
if os.environ.get("DIFFUSION_TRAINING_TEST",
"") and self.step > 0:
return
self.step += 1
if self.step > self.iterations:
print('reached maximum iterations, exiting')
# Save the last checkpoint if it wasn't already saved.
if (self.step - 1) % self.save_interval != 0:
self.save(self.mp_trainer, self.mp_trainer.model_name)
# ! delete old ones
if (self.step - 1) % 1e5 == 0:
for idx in range(1,10):
os.remove(f"model_{self.mp_trainer.model_name}{(self.step+self.resume_step-idx*1e4):07d}.pt" )
# if self.sde_diffusion.args.train_vae:
# self.save(self.mp_trainer_rec,
# self.mp_trainer_rec.model_name)
exit()
# Save the last checkpoint if it wasn't already saved.
if (self.step - 1) % self.save_interval != 0:
self.save(self.mp_trainer,
self.mp_trainer.model_name) # rec and ddpm all fixed.
# st()
# self.save(self.mp_trainer_canonical_cvD, 'cvD')
# ddpm + rec loss
def ldm_train_step(self, batch, behaviour='cano', *args, **kwargs):
"""
add sds grad to all ae predicted x_0
"""
# ! enable the gradient of both models
requires_grad(self.ddpm_model, True)
self.mp_trainer.zero_grad() # !!!!
if 'img' in batch:
batch_size = batch['img'].shape[0]
else:
batch_size = len(batch['caption'])
for i in range(0, batch_size, self.microbatch):
micro = {
k:
v[i:i + self.microbatch].to(dist_util.dev()) if isinstance(
v, th.Tensor) else v
for k, v in batch.items()
}
# =================================== ae part ===================================
with th.cuda.amp.autocast(dtype=th.bfloat16,
enabled=self.mp_trainer.use_amp):
loss = th.tensor(0.).to(dist_util.dev())
if 'latent' in micro:
vae_out = {self.latent_name: micro['latent']}
else:
vae_out = self.ddp_rec_model(
img=micro['img_to_encoder'],
c=micro['c'],
behaviour='encoder_vae',
) # pred: (B, 3, 64, 64)
eps = vae_out[self.latent_name] / self.triplane_scaling_divider
# eps = vae_out.pop(self.latent_name)
if 'bg_plane' in vae_out:
eps = th.cat((eps, vae_out['bg_plane']),
dim=1) # include background, B 12+4 32 32
p_sample_batch = self.prepare_ddpm(eps)
cond = self.get_c_input(micro, bs=eps.shape[0])
# ! running diffusion forward
ddpm_ret = self.apply_model(p_sample_batch, cond)
if self.sde_diffusion.args.p_rendering_loss:
target = micro
pred = self.ddp_rec_model(
# latent=vae_out,
latent={
# **vae_out,
self.latent_name: ddpm_ret['pred_x0_p'],
'latent_name': self.latent_name
},
c=micro['c'],
behaviour=self.render_latent_behaviour)
# vae reconstruction loss
with self.ddp_control_model.no_sync(): # type: ignore
p_vae_recon_loss, rec_loss_dict = self.loss_class(
pred, target, test_mode=False)
log_rec3d_loss_dict(rec_loss_dict)
# log_rec3d_loss_dict(
# dict(p_vae_recon_loss=p_vae_recon_loss, ))
loss = p_vae_recon_loss + ddpm_ret[
'p_eps_objective'] # TODO, add obj_weight_t_p?
else:
loss = ddpm_ret['p_eps_objective'].mean()
# =====================================================================
self.mp_trainer.backward(loss) # joint gradient descent
# update ddpm accordingly
self.mp_trainer.optimize(self.opt)
if dist_util.get_rank() == 0 and self.step % 500 == 0:
self.log_control_images(vae_out, p_sample_batch, micro, ddpm_ret)
@th.inference_mode()
def log_control_images(self, vae_out, p_sample_batch, micro, ddpm_ret):
eps_t_p, t_p, logsnr_p = (p_sample_batch[k] for k in (
'eps_t_p',
't_p',
'logsnr_p',
))
pred_eps_p = ddpm_ret['pred_eps_p']
if 'posterior' in vae_out:
vae_out.pop('posterior') # for calculating kl loss
vae_out_for_pred = {
k: v[0:1].to(dist_util.dev()) if isinstance(v, th.Tensor) else v
for k, v in vae_out.items()
}
pred = self.ddp_rec_model(latent=vae_out_for_pred,
c=micro['c'][0:1],
behaviour=self.render_latent_behaviour)
assert isinstance(pred, dict)
pred_img = pred['image_raw']
if 'img' in micro:
gt_img = micro['img']
else:
gt_img = th.zeros_like(pred['image_raw'])
if 'depth' in micro:
gt_depth = micro['depth']
if gt_depth.ndim == 3:
gt_depth = gt_depth.unsqueeze(1)
gt_depth = (gt_depth - gt_depth.min()) / (gt_depth.max() -
gt_depth.min())
else:
gt_depth = th.zeros_like(gt_img[:, 0:1, ...])
if 'image_depth' in pred:
pred_depth = pred['image_depth']
pred_depth = (pred_depth - pred_depth.min()) / (pred_depth.max() -
pred_depth.min())
else:
pred_depth = th.zeros_like(gt_depth)
gt_img = self.pool_128(gt_img)
gt_depth = self.pool_128(gt_depth)
# cond = self.get_c_input(micro)
# hint = th.cat(cond['c_concat'], 1)
gt_vis = th.cat(
[
gt_img,
gt_img,
gt_img,
# self.pool_128(hint),
# gt_img,
gt_depth.repeat_interleave(3, dim=1)
],
dim=-1)[0:1] # TODO, fail to load depth. range [0, 1]
# eps_t_p_3D = eps_t_p.reshape(batch_size, eps_t_p.shape[1]//3, 3, -1) # B C 3 L
if 'bg_plane' in vae_out:
noised_latent = {
'latent_normalized_2Ddiffusion':
eps_t_p[0:1, :12] * self.triplane_scaling_divider,
'bg_plane':
eps_t_p[0:1, 12:16] * self.triplane_scaling_divider,
}
else:
noised_latent = {
'latent_normalized_2Ddiffusion':
eps_t_p[0:1] * self.triplane_scaling_divider,
}
noised_ae_pred = self.ddp_rec_model(
img=None,
c=micro['c'][0:1],
latent=noised_latent,
# latent=eps_t_p[0:1] * self.
# triplane_scaling_divider, # TODO, how to define the scale automatically
behaviour=self.render_latent_behaviour)
pred_x0 = self.sde_diffusion._predict_x0_from_eps(
eps_t_p, pred_eps_p, logsnr_p) # for VAE loss, denosied latent
if 'bg_plane' in vae_out:
denoised_latent = {
'latent_normalized_2Ddiffusion':
pred_x0[0:1, :12] * self.triplane_scaling_divider,
'bg_plane':
pred_x0[0:1, 12:16] * self.triplane_scaling_divider,
}
else:
denoised_latent = {
'latent_normalized_2Ddiffusion':
pred_x0[0:1] * self.triplane_scaling_divider,
}
# pred_xstart_3D
denoised_ae_pred = self.ddp_rec_model(
img=None,
c=micro['c'][0:1],
latent=denoised_latent,
# latent=pred_x0[0:1] * self.
# triplane_scaling_divider, # TODO, how to define the scale automatically?
behaviour=self.render_latent_behaviour)
pred_vis = th.cat(
[
self.pool_128(img) for img in (
pred_img[0:1],
noised_ae_pred['image_raw'][0:1],
denoised_ae_pred['image_raw'][0:1], # controlnet result
pred_depth[0:1].repeat_interleave(3, dim=1))
],
dim=-1) # B, 3, H, W
if 'img' in micro:
vis = th.cat([gt_vis, pred_vis],
dim=-2)[0].permute(1, 2,
0).cpu() # ! pred in range[-1, 1]
else:
vis = pred_vis[0].permute(1, 2, 0).cpu()
# vis_grid = torchvision.utils.make_grid(vis) # HWC
vis = vis.numpy() * 127.5 + 127.5
vis = vis.clip(0, 255).astype(np.uint8)
Image.fromarray(vis).save(
f'{logger.get_dir()}/{self.step+self.resume_step}denoised_{t_p[0].item():3}.jpg'
)
# if self.cond_key == 'caption':
# with open(f'{logger.get_dir()}/{self.step+self.resume_step}caption_{t_p[0].item():3}.txt', 'w') as f:
# f.write(micro['caption'][0])
print(
'log denoised vis to: ',
f'{logger.get_dir()}/{self.step+self.resume_step}denoised_{t_p[0].item():3}.jpg'
)
th.cuda.empty_cache()
@th.inference_mode()
def eval_cldm(
self,
prompt="",
use_ddim=False,
unconditional_guidance_scale=1.0,
save_img=False,
use_train_trajectory=False,
camera=None,
num_samples=1,
num_instances=1,
):
self.ddpm_model.eval()
args = dnnlib.EasyDict(
dict(
batch_size=1,
image_size=self.diffusion_input_size,
denoise_in_channels=self.rec_model.decoder.triplane_decoder.
out_chans, # type: ignore
clip_denoised=False,
class_cond=False,
use_ddim=use_ddim))
model_kwargs = {}
if args.class_cond:
classes = th.randint(low=0,
high=NUM_CLASSES,
size=(args.batch_size, ),
device=dist_util.dev())
model_kwargs["y"] = classes
diffusion = self.diffusion
sample_fn = (diffusion.p_sample_loop
if not args.use_ddim else diffusion.ddim_sample_loop)
# for i, batch in enumerate(tqdm(self.eval_data)):
# use the first frame as the condition now
extra_kwargs = {}
uc = None
if args.use_ddim:
if unconditional_guidance_scale != 1.0:
uc = self.get_c_input(
{self.cond_key: 'None'},
use_text=True,
prompt="None",
bs=1, # TODO, support BS>1 later
force_drop_ids=np.array(
[ # ! make sure using dropped tokens
1
])) # use specific prompt for debug
extra_kwargs.update(
dict(
unconditional_guidance_scale=unconditional_guidance_scale,
unconditional_conditioning=uc, # TODO
# {
# k : unconditional_guidance_scale
# for k in cond.keys()
# }
))
# hint = th.cat(cond['c_concat'], 1)
# record cond images
# broadcast to args.batch_size
for instance in range(num_instances):
if self.cond_key == 'caption':
if camera is not None:
batch = {'c': camera.clone()}
else:
if use_train_trajectory:
batch = next(iter(self.data))
else:
try:
batch = next(self.eval_data)
except Exception as e:
self.eval_data = iter(self.eval_data)
batch = next(self.eval_data)
if camera is not None:
batch['c'] = camera.clone()
# ! generate new samples
novel_view_cond = {
k:
v[0:1].to(dist_util.dev())
if isinstance(v, th.Tensor) else v[0:1]
# micro['img'].shape[0], 0)
for k, v in batch.items()
}
cond = self.get_c_input(
novel_view_cond, use_text=prompt != "",
prompt=prompt) # use specific prompt for debug
cond = {
k: cond_v.repeat_interleave(args.batch_size, 0)
for k, cond_v in cond.items()
# if k == self.conditioning_key
}
if self.cond_key == 'caption':
if prompt != '':
with open(
f'{logger.get_dir()}/triplane_{self.step+self.resume_step}_{instance}_caption.txt',
'w') as f:
f.write(prompt)
else:
with open(
f'{logger.get_dir()}/triplane_{self.step+self.resume_step}_{instance}_caption.txt',
'w') as f:
try:
f.write(novel_view_cond['caption'][0])
except Exception as e:
pass
elif self.cond_key == 'img':
torchvision.utils.save_image(
cond['c_concat'],
f'{logger.get_dir()}/{self.step + self.resume_step}_{instance}_cond.jpg',
normalize=True,
value_range=(-1, 1))
# continue
for i in range(num_samples):
triplane_sample = sample_fn(
self,
(
args.batch_size,
self.ddpm_model.in_channels
if not self.ddpm_model.roll_out else 3 *
self.ddpm_model.in_channels, # type: ignore
self.diffusion_input_size,
self.diffusion_input_size),
cond=cond,
clip_denoised=args.clip_denoised,
model_kwargs=model_kwargs,
# mixing_normal=True, # !
mixing_normal=self.ddpm_model.mixed_prediction, # !
device=dist_util.dev(),
**extra_kwargs)
th.cuda.empty_cache()
self.render_video_given_triplane(
triplane_sample,
self.rec_model, # compatible with join_model
name_prefix=
f'{self.step + self.resume_step}_{instance}_{i}',
save_img=save_img,
render_reference=batch,
export_mesh=False)
# save gt
# video_out = imageio.get_writer(
# f'{logger.get_dir()}/triplane_{self.step + self.resume_step}_{i}_reference.mp4',
# mode='I',
# fps=15,
# codec='libx264')
# for j in range(batch['img'].shape[0]
# ): # ! currently only export one plane at a time
# cpu_gt = batch['img'][j].cpu().permute(1,2,0).numpy()
# cpu_gt = (cpu_gt*127.5)+127.5
# video_out.append_data(cpu_gt.astype(np.uint8))
# video_out.close()
# del video_out
# del triplane_sample
# th.cuda.empty_cache()
self.ddpm_model.train()
class TrainLoop3DDiffusionLSGM_crossattn_controlNet(
TrainLoop3DDiffusionLSGM_crossattn):
def __init__(self,
*,
rec_model,
denoise_model,
diffusion,
sde_diffusion,
control_model,
control_key,
only_mid_control,
loss_class,
data,
eval_data,
batch_size,
microbatch,
lr,
ema_rate,
log_interval,
eval_interval,
save_interval,
resume_checkpoint,
resume_cldm_checkpoint=None,
use_fp16=False,
fp16_scale_growth=0.001,
schedule_sampler=None,
weight_decay=0,
lr_anneal_steps=0,
iterations=10001,
ignore_resume_opt=False,
freeze_ae=False,
denoised_ae=True,
triplane_scaling_divider=10,
use_amp=False,
diffusion_input_size=224,
normalize_clip_encoding=False,
scale_clip_encoding=1,
cfg_dropout_prob=0,
cond_key='img_sr',
use_eos_feature=False,
compile=False,
**kwargs):
super().__init__(rec_model=rec_model,
denoise_model=denoise_model,
diffusion=diffusion,
sde_diffusion=sde_diffusion,
control_model=control_model,
control_key=control_key,
only_mid_control=only_mid_control,
loss_class=loss_class,
data=data,
eval_data=eval_data,
batch_size=batch_size,
microbatch=microbatch,
lr=lr,
ema_rate=ema_rate,
log_interval=log_interval,
eval_interval=eval_interval,
save_interval=save_interval,
resume_checkpoint=resume_checkpoint,
resume_cldm_checkpoint=resume_cldm_checkpoint,
use_fp16=use_fp16,
fp16_scale_growth=fp16_scale_growth,
schedule_sampler=schedule_sampler,
weight_decay=weight_decay,
lr_anneal_steps=lr_anneal_steps,
iterations=iterations,
ignore_resume_opt=ignore_resume_opt,
freeze_ae=freeze_ae,
denoised_ae=denoised_ae,
triplane_scaling_divider=triplane_scaling_divider,
use_amp=use_amp,
diffusion_input_size=diffusion_input_size,
normalize_clip_encoding=normalize_clip_encoding,
scale_clip_encoding=scale_clip_encoding,
cfg_dropout_prob=cfg_dropout_prob,
cond_key=cond_key,
use_eos_feature=use_eos_feature,
compile=compile,
**kwargs)
# st()
self.control_model = control_model
self.control_key = control_key
self.only_mid_control = only_mid_control
self.control_scales = [1.0] * 13
self.sd_locked = True
self._setup_control_model()
def _setup_control_model(self):
requires_grad(self.rec_model, False)
requires_grad(self.ddpm_model, False)
self.mp_cldm_trainer = MixedPrecisionTrainer(
model=self.control_model,
use_fp16=self.use_fp16,
fp16_scale_growth=self.fp16_scale_growth,
use_amp=self.use_amp,
model_name='cldm')
self.ddp_control_model = DDP(
self.control_model,
device_ids=[dist_util.dev()],
output_device=dist_util.dev(),
broadcast_buffers=False,
bucket_cap_mb=128,
find_unused_parameters=False,
)
requires_grad(self.ddp_control_model, True)
# ! load trainable copy
# TODO
# st()
try:
logger.log(f"load pretrained controlnet, not trainable copy.")
self._load_and_sync_parameters(model=self.control_model,
model_name='cldm',
resume_checkpoint=self.resume_cldm_checkpoint,
) # if available
except:
logger.log(f"load trainable copy to controlnet")
model_state_dict = self.control_model.state_dict()
for k, v in self.ddpm_model.state_dict().items():
if k in model_state_dict.keys() and v.size(
) == model_state_dict[k].size():
model_state_dict[k] = v
self.control_model.load_state_dict(model_state_dict)
# self._load_and_sync_parameters(
# model=self.control_model,
# model_name='ddpm') # load pre-trained SD
cldm_param = [{
'name': 'cldm.parameters()',
'params': self.control_model.parameters(),
}]
# if self.sde_diffusion.args.unfix_logit:
# self.ddpm_model.mixing_logit.requires_grad_(True)
# cldm_param.append({
# 'name': 'mixing_logit',
# 'params': self.ddpm_model.mixing_logit,
# })
self.opt_cldm = AdamW(cldm_param,
lr=self.lr,
weight_decay=self.weight_decay)
if self.sd_locked:
del self.opt
del self.mp_trainer
# add control during inference
def apply_model_inference(self, x_noisy, t, c, model_kwargs={}):
control = self.ddp_control_model(
x=x_noisy,
# hint=th.cat(c['c_concat'], 1),
hint=c['c_concat'],
timesteps=t,
context=None)
control = [c * scale for c, scale in zip(control, self.control_scales)]
model_kwargs.update({'control': control})
return super().apply_model_inference(x_noisy, t, c, model_kwargs)
def apply_control_model(self, p_sample_batch, cond):
x_noisy, t, = (p_sample_batch[k] for k in ('eps_t_p', 't_p'))
control = self.ddp_control_model(
x=x_noisy,
# hint=th.cat(cond['c_concat'], 1),
hint=cond['c_concat'],
timesteps=t,
context=None)
control = [c * scale for c, scale in zip(control, self.control_scales)]
return control
def apply_model(self, p_sample_batch, cond, model_kwargs={}):
control = self.apply_control_model(p_sample_batch,
cond) # len(control): 13
model_kwargs.update({'control': control})
return super().apply_model(p_sample_batch, cond, model_kwargs)
# cldm loss
def ldm_train_step(self, batch, behaviour='cano', *args, **kwargs):
"""
add sds grad to all ae predicted x_0
"""
# ! enable the gradient of both models
requires_grad(self.ddp_control_model, True)
self.mp_cldm_trainer.zero_grad() # !!!!
if 'img' in batch:
batch_size = batch['img'].shape[0]
else:
batch_size = len(batch['caption'])
for i in range(0, batch_size, self.microbatch):
micro = {
k:
v[i:i + self.microbatch].to(dist_util.dev()) if isinstance(
v, th.Tensor) else v
for k, v in batch.items()
}
# =================================== ae part ===================================
with th.cuda.amp.autocast(dtype=th.float16,
enabled=self.mp_cldm_trainer.use_amp):
loss = th.tensor(0.).to(dist_util.dev())
if 'latent' in micro:
vae_out = {self.latent_name: micro['latent']}
else:
vae_out = self.ddp_rec_model(
img=micro['img_to_encoder'],
c=micro['c'],
behaviour='encoder_vae',
) # pred: (B, 3, 64, 64)
eps = vae_out[self.latent_name] / self.triplane_scaling_divider
# eps = vae_out.pop(self.latent_name)
if 'bg_plane' in vae_out:
eps = th.cat((eps, vae_out['bg_plane']),
dim=1) # include background, B 12+4 32 32
p_sample_batch = self.prepare_ddpm(eps)
cond = self.get_c_input(micro, bs=eps.shape[0])
# ! running diffusion forward
ddpm_ret = self.apply_model(p_sample_batch, cond)
if self.sde_diffusion.args.p_rendering_loss:
target = micro
pred = self.ddp_rec_model(
# latent=vae_out,
latent={
# **vae_out,
self.latent_name: ddpm_ret['pred_x0_p'],
'latent_name': self.latent_name
},
c=micro['c'],
behaviour=self.render_latent_behaviour)
# vae reconstruction loss
with self.ddp_control_model.no_sync(): # type: ignore
p_vae_recon_loss, rec_loss_dict = self.loss_class(
pred, target, test_mode=False)
log_rec3d_loss_dict(rec_loss_dict)
# log_rec3d_loss_dict(
# dict(p_vae_recon_loss=p_vae_recon_loss, ))
loss = p_vae_recon_loss + ddpm_ret[
'p_eps_objective'] # TODO, add obj_weight_t_p?
else:
loss = ddpm_ret['p_eps_objective'].mean()
# =====================================================================
self.mp_cldm_trainer.backward(loss) # joint gradient descent
# p self.control_model.input_hint_block[0].bias
# update ddpm accordingly
self.mp_cldm_trainer.optimize(self.opt_cldm)
if dist_util.get_rank() == 0 and self.step % 500 == 0:
self.log_control_images(vae_out, p_sample_batch, micro, ddpm_ret)
def run_loop(self):
# eval camera
camera = th.load('eval_pose.pt', map_location=dist_util.dev())
while (not self.lr_anneal_steps
or self.step + self.resume_step < self.lr_anneal_steps):
# let all processes sync up before starting with a new epoch of training
# dist_util.synchronize()
batch = next(self.data)
self.run_step(batch, step='ldm_step')
if self.step % self.log_interval == 0 and dist_util.get_rank(
) == 0:
out = logger.dumpkvs()
# * log to tensorboard
for k, v in out.items():
self.writer.add_scalar(f'Loss/{k}', v,
self.step + self.resume_step)
# if self.step % self.eval_interval == 0 and self.step != 0:
if self.step % self.eval_interval == 0:
if dist_util.get_rank() == 0:
# self.eval_ddpm_sample()
# self.eval_cldm(use_ddim=True, unconditional_guidance_scale=7.5, prompt="") # during training, use image as condition
if self.cond_key == 'caption':
self.eval_cldm(
use_ddim=False,
prompt="a voxelized dog",
# prompt="a blue plastic chair.",
use_train_trajectory=False,
camera=camera) # fix condition bug first
else:
pass # TODO
# self.eval_cldm(use_ddim=False,
# prompt="",
# use_train_trajectory=False,
# camera=camera) # fix condition bug first
# if self.sde_diffusion.args.train_vae:
# self.eval_loop()
th.cuda.empty_cache()
dist_util.synchronize()
if self.step % self.save_interval == 0 and self.step != 0:
self.save(self.mp_cldm_trainer,
self.mp_cldm_trainer.model_name)
if os.environ.get("DIFFUSION_TRAINING_TEST",
"") and self.step > 0:
return
self.step += 1
if self.step > self.iterations:
print('reached maximum iterations, exiting')
# Save the last checkpoint if it wasn't already saved.
if (self.step - 1) % self.save_interval != 0:
self.save(self.mp_trainer, self.mp_trainer.model_name)
# if self.sde_diffusion.args.train_vae:
# self.save(self.mp_trainer_rec,
# self.mp_trainer_rec.model_name)
exit()
# Save the last checkpoint if it wasn't already saved.
if (self.step - 1) % self.save_interval != 0:
self.save(self.mp_trainer, self.mp_trainer.model_name)
# self.save(self.mp_trainer,
# self.mp_trainer.model_name) # rec and ddpm all fixed.
# st()
# self.save(self.mp_trainer_canonical_cvD, 'cvD')
|