Spaces:
Running
on
Zero
Running
on
Zero
File size: 29,086 Bytes
7f51798 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 |
# ---------------------------------------------------------------
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved.
#
# This work is licensed under the NVIDIA Source Code License
# for LSGM. To view a copy of this license, see the LICENSE file.
# ---------------------------------------------------------------
import logging
import os
import math
import shutil
import time
import sys
import types
import torch
import torch.nn as nn
import numpy as np
import torch.distributed as dist
# from util.distributions import PixelNormal
from torch.cuda.amp import autocast
# from tensorboardX import SummaryWriter
class AvgrageMeter(object):
def __init__(self):
self.reset()
def reset(self):
self.avg = 0
self.sum = 0
self.cnt = 0
def update(self, val, n=1):
self.sum += val * n
self.cnt += n
self.avg = self.sum / self.cnt
class ExpMovingAvgrageMeter(object):
def __init__(self, momentum=0.9):
self.momentum = momentum
self.reset()
def reset(self):
self.avg = 0
def update(self, val):
self.avg = (1. - self.momentum) * self.avg + self.momentum * val
class DummyDDP(nn.Module):
def __init__(self, model):
super(DummyDDP, self).__init__()
self.module = model
def forward(self, *input, **kwargs):
return self.module(*input, **kwargs)
def count_parameters_in_M(model):
return np.sum(np.prod(v.size()) for name, v in model.named_parameters() if "auxiliary" not in name) / 1e6
def save_checkpoint(state, is_best, save):
filename = os.path.join(save, 'checkpoint.pth.tar')
torch.save(state, filename)
if is_best:
best_filename = os.path.join(save, 'model_best.pth.tar')
shutil.copyfile(filename, best_filename)
def save(model, model_path):
torch.save(model.state_dict(), model_path)
def load(model, model_path):
model.load_state_dict(torch.load(model_path))
def create_exp_dir(path, scripts_to_save=None):
if not os.path.exists(path):
os.makedirs(path, exist_ok=True)
print('Experiment dir : {}'.format(path))
if scripts_to_save is not None:
if not os.path.exists(os.path.join(path, 'scripts')):
os.mkdir(os.path.join(path, 'scripts'))
for script in scripts_to_save:
dst_file = os.path.join(path, 'scripts', os.path.basename(script))
shutil.copyfile(script, dst_file)
class Logger(object):
def __init__(self, rank, save):
# other libraries may set logging before arriving at this line.
# by reloading logging, we can get rid of previous configs set by other libraries.
from importlib import reload
reload(logging)
self.rank = rank
if self.rank == 0:
log_format = '%(asctime)s %(message)s'
logging.basicConfig(stream=sys.stdout, level=logging.INFO,
format=log_format, datefmt='%m/%d %I:%M:%S %p')
fh = logging.FileHandler(os.path.join(save, 'log.txt'))
fh.setFormatter(logging.Formatter(log_format))
logging.getLogger().addHandler(fh)
self.start_time = time.time()
def info(self, string, *args):
if self.rank == 0:
elapsed_time = time.time() - self.start_time
elapsed_time = time.strftime(
'(Elapsed: %H:%M:%S) ', time.gmtime(elapsed_time))
if isinstance(string, str):
string = elapsed_time + string
else:
logging.info(elapsed_time)
logging.info(string, *args)
class Writer(object):
def __init__(self, rank, save):
self.rank = rank
if self.rank == 0:
self.writer = SummaryWriter(log_dir=save, flush_secs=20)
def add_scalar(self, *args, **kwargs):
if self.rank == 0:
self.writer.add_scalar(*args, **kwargs)
def add_figure(self, *args, **kwargs):
if self.rank == 0:
self.writer.add_figure(*args, **kwargs)
def add_image(self, *args, **kwargs):
if self.rank == 0:
self.writer.add_image(*args, **kwargs)
def add_histogram(self, *args, **kwargs):
if self.rank == 0:
self.writer.add_histogram(*args, **kwargs)
def add_histogram_if(self, write, *args, **kwargs):
if write and False: # Used for debugging.
self.add_histogram(*args, **kwargs)
def close(self, *args, **kwargs):
if self.rank == 0:
self.writer.close()
def common_init(rank, seed, save_dir):
# we use different seeds per gpu. But we sync the weights after model initialization.
torch.manual_seed(rank + seed)
np.random.seed(rank + seed)
torch.cuda.manual_seed(rank + seed)
torch.cuda.manual_seed_all(rank + seed)
torch.backends.cudnn.benchmark = True
# prepare logging and tensorboard summary
logging = Logger(rank, save_dir)
writer = Writer(rank, save_dir)
return logging, writer
def reduce_tensor(tensor, world_size):
rt = tensor.clone()
dist.all_reduce(rt, op=dist.ReduceOp.SUM)
rt /= world_size
return rt
def get_stride_for_cell_type(cell_type):
if cell_type.startswith('normal') or cell_type.startswith('combiner'):
stride = 1
elif cell_type.startswith('down'):
stride = 2
elif cell_type.startswith('up'):
stride = -1
else:
raise NotImplementedError(cell_type)
return stride
def get_cout(cin, stride):
if stride == 1:
cout = cin
elif stride == -1:
cout = cin // 2
elif stride == 2:
cout = 2 * cin
return cout
def kl_balancer_coeff(num_scales, groups_per_scale, fun):
if fun == 'equal':
coeff = torch.cat([torch.ones(groups_per_scale[num_scales - i - 1]) for i in range(num_scales)], dim=0).cuda()
elif fun == 'linear':
coeff = torch.cat([(2 ** i) * torch.ones(groups_per_scale[num_scales - i - 1]) for i in range(num_scales)],
dim=0).cuda()
elif fun == 'sqrt':
coeff = torch.cat(
[np.sqrt(2 ** i) * torch.ones(groups_per_scale[num_scales - i - 1]) for i in range(num_scales)],
dim=0).cuda()
elif fun == 'square':
coeff = torch.cat(
[np.square(2 ** i) / groups_per_scale[num_scales - i - 1] * torch.ones(groups_per_scale[num_scales - i - 1])
for i in range(num_scales)], dim=0).cuda()
else:
raise NotImplementedError
# convert min to 1.
coeff /= torch.min(coeff)
return coeff
def kl_per_group(kl_all):
kl_vals = torch.mean(kl_all, dim=0)
kl_coeff_i = torch.abs(kl_all)
kl_coeff_i = torch.mean(kl_coeff_i, dim=0, keepdim=True) + 0.01
return kl_coeff_i, kl_vals
def kl_balancer(kl_all, kl_coeff=1.0, kl_balance=False, alpha_i=None):
if kl_balance and kl_coeff < 1.0:
alpha_i = alpha_i.unsqueeze(0)
kl_all = torch.stack(kl_all, dim=1)
kl_coeff_i, kl_vals = kl_per_group(kl_all)
total_kl = torch.sum(kl_coeff_i)
kl_coeff_i = kl_coeff_i / alpha_i * total_kl
kl_coeff_i = kl_coeff_i / torch.mean(kl_coeff_i, dim=1, keepdim=True)
kl = torch.sum(kl_all * kl_coeff_i.detach(), dim=1)
# for reporting
kl_coeffs = kl_coeff_i.squeeze(0)
else:
kl_all = torch.stack(kl_all, dim=1)
kl_vals = torch.mean(kl_all, dim=0)
# kl = torch.sum(kl_all, dim=1)
# kl = torch.mean(kl_all, dim=1)
kl = torch.mean(kl_all)
kl_coeffs = torch.ones(size=(len(kl_vals),))
return kl_coeff * kl, kl_coeffs, kl_vals
def kl_per_group_vada(all_log_q, all_neg_log_p):
assert len(all_log_q) == len(all_neg_log_p)
kl_all_list = []
kl_diag = []
for log_q, neg_log_p in zip(all_log_q, all_neg_log_p):
# kl_diag.append(torch.mean(torch.sum(neg_log_p + log_q, dim=[2, 3]), dim=0))
kl_diag.append(torch.mean(torch.mean(neg_log_p + log_q, dim=[2, 3]), dim=0))
# kl_all_list.append(torch.sum(neg_log_p + log_q, dim=[1, 2, 3]))
kl_all_list.append(torch.mean(neg_log_p + log_q, dim=[1, 2, 3]))
# kl_all = torch.stack(kl_all, dim=1) # batch x num_total_groups
kl_vals = torch.mean(torch.stack(kl_all_list, dim=1), dim=0) # mean per group
return kl_all_list, kl_vals, kl_diag
def kl_coeff(step, total_step, constant_step, min_kl_coeff, max_kl_coeff):
# return max(min(max_kl_coeff * (step - constant_step) / total_step, max_kl_coeff), min_kl_coeff)
return max(min(min_kl_coeff + (max_kl_coeff - min_kl_coeff) * (step - constant_step) / total_step, max_kl_coeff), min_kl_coeff)
def log_iw(decoder, x, log_q, log_p, crop=False):
recon = reconstruction_loss(decoder, x, crop)
return - recon - log_q + log_p
def reconstruction_loss(decoder, x, crop=False):
from util.distributions import DiscMixLogistic
recon = decoder.log_p(x)
if crop:
recon = recon[:, :, 2:30, 2:30]
if isinstance(decoder, DiscMixLogistic):
return - torch.sum(recon, dim=[1, 2]) # summation over RGB is done.
else:
return - torch.sum(recon, dim=[1, 2, 3])
def vae_terms(all_log_q, all_eps):
from util.distributions import log_p_standard_normal
# compute kl
kl_all = []
kl_diag = []
log_p, log_q = 0., 0.
for log_q_conv, eps in zip(all_log_q, all_eps):
log_p_conv = log_p_standard_normal(eps)
kl_per_var = log_q_conv - log_p_conv
kl_diag.append(torch.mean(torch.sum(kl_per_var, dim=[2, 3]), dim=0))
kl_all.append(torch.sum(kl_per_var, dim=[1, 2, 3]))
log_q += torch.sum(log_q_conv, dim=[1, 2, 3])
log_p += torch.sum(log_p_conv, dim=[1, 2, 3])
return log_q, log_p, kl_all, kl_diag
def sum_log_q(all_log_q):
log_q = 0.
for log_q_conv in all_log_q:
log_q += torch.sum(log_q_conv, dim=[1, 2, 3])
return log_q
def cross_entropy_normal(all_eps):
from util.distributions import log_p_standard_normal
cross_entropy = 0.
neg_log_p_per_group = []
for eps in all_eps:
neg_log_p_conv = - log_p_standard_normal(eps)
neg_log_p = torch.sum(neg_log_p_conv, dim=[1, 2, 3])
cross_entropy += neg_log_p
neg_log_p_per_group.append(neg_log_p_conv)
return cross_entropy, neg_log_p_per_group
def tile_image(batch_image, n, m=None):
if m is None:
m = n
assert n * m == batch_image.size(0)
channels, height, width = batch_image.size(1), batch_image.size(2), batch_image.size(3)
batch_image = batch_image.view(n, m, channels, height, width)
batch_image = batch_image.permute(2, 0, 3, 1, 4) # n, height, n, width, c
batch_image = batch_image.contiguous().view(channels, n * height, m * width)
return batch_image
def average_gradients_naive(params, is_distributed):
""" Gradient averaging. """
if is_distributed:
size = float(dist.get_world_size())
for param in params:
if param.requires_grad:
param.grad.data /= size
dist.all_reduce(param.grad.data, op=dist.ReduceOp.SUM)
def average_gradients(params, is_distributed):
""" Gradient averaging. """
if is_distributed:
if isinstance(params, types.GeneratorType):
params = [p for p in params]
size = float(dist.get_world_size())
grad_data = []
grad_size = []
grad_shapes = []
# Gather all grad values
for param in params:
if param.requires_grad:
grad_size.append(param.grad.data.numel())
grad_shapes.append(list(param.grad.data.shape))
grad_data.append(param.grad.data.flatten())
grad_data = torch.cat(grad_data).contiguous()
# All-reduce grad values
grad_data /= size
dist.all_reduce(grad_data, op=dist.ReduceOp.SUM)
# Put back the reduce grad values to parameters
base = 0
for i, param in enumerate(params):
if param.requires_grad:
param.grad.data = grad_data[base:base + grad_size[i]].view(grad_shapes[i])
base += grad_size[i]
def average_params(params, is_distributed):
""" parameter averaging. """
if is_distributed:
size = float(dist.get_world_size())
for param in params:
param.data /= size
dist.all_reduce(param.data, op=dist.ReduceOp.SUM)
def average_tensor(t, is_distributed):
if is_distributed:
size = float(dist.get_world_size())
dist.all_reduce(t.data, op=dist.ReduceOp.SUM)
t.data /= size
def broadcast_params(params, is_distributed):
if is_distributed:
for param in params:
dist.broadcast(param.data, src=0)
def num_output(dataset):
if dataset in {'mnist', 'omniglot'}:
return 28 * 28
elif dataset == 'cifar10':
return 3 * 32 * 32
elif dataset.startswith('celeba') or dataset.startswith('imagenet') or dataset.startswith('lsun'):
size = int(dataset.split('_')[-1])
return 3 * size * size
elif dataset == 'ffhq':
return 3 * 256 * 256
else:
raise NotImplementedError
def get_input_size(dataset):
if dataset in {'mnist', 'omniglot'}:
return 32
elif dataset == 'cifar10':
return 32
elif dataset.startswith('celeba') or dataset.startswith('imagenet') or dataset.startswith('lsun'):
size = int(dataset.split('_')[-1])
return size
elif dataset == 'ffhq':
return 256
else:
raise NotImplementedError
def get_bpd_coeff(dataset):
n = num_output(dataset)
return 1. / np.log(2.) / n
def get_channel_multiplier(dataset, num_scales):
if dataset in {'cifar10', 'omniglot'}:
mult = (1, 1, 1)
elif dataset in {'celeba_256', 'ffhq', 'lsun_church_256'}:
if num_scales == 3:
mult = (1, 1, 1) # used for prior at 16
elif num_scales == 4:
mult = (1, 2, 2, 2) # used for prior at 32
elif num_scales == 5:
mult = (1, 1, 2, 2, 2) # used for prior at 64
elif dataset == 'mnist':
mult = (1, 1)
else:
raise NotImplementedError
return mult
def get_attention_scales(dataset):
if dataset in {'cifar10', 'omniglot'}:
attn = (True, False, False)
elif dataset in {'celeba_256', 'ffhq', 'lsun_church_256'}:
# attn = (False, True, False, False) # used for 32
attn = (False, False, True, False, False) # used for 64
elif dataset == 'mnist':
attn = (True, False)
else:
raise NotImplementedError
return attn
def change_bit_length(x, num_bits):
if num_bits != 8:
x = torch.floor(x * 255 / 2 ** (8 - num_bits))
x /= (2 ** num_bits - 1)
return x
def view4D(t, size, inplace=True):
"""
Equal to view(-1, 1, 1, 1).expand(size)
Designed because of this bug:
https://github.com/pytorch/pytorch/pull/48696
"""
if inplace:
return t.unsqueeze_(-1).unsqueeze_(-1).unsqueeze_(-1).expand(size)
else:
return t.unsqueeze(-1).unsqueeze(-1).unsqueeze(-1).expand(size)
def get_arch_cells(arch_type, use_se):
if arch_type == 'res_mbconv':
arch_cells = dict()
arch_cells['normal_enc'] = {'conv_branch': ['res_bnswish', 'res_bnswish'], 'se': use_se}
arch_cells['down_enc'] = {'conv_branch': ['res_bnswish', 'res_bnswish'], 'se': use_se}
arch_cells['normal_dec'] = {'conv_branch': ['mconv_e6k5g0'], 'se': use_se}
arch_cells['up_dec'] = {'conv_branch': ['mconv_e6k5g0'], 'se': use_se}
arch_cells['normal_pre'] = {'conv_branch': ['res_bnswish', 'res_bnswish'], 'se': use_se}
arch_cells['down_pre'] = {'conv_branch': ['res_bnswish', 'res_bnswish'], 'se': use_se}
arch_cells['normal_post'] = {'conv_branch': ['mconv_e3k5g0'], 'se': use_se}
arch_cells['up_post'] = {'conv_branch': ['mconv_e3k5g0'], 'se': use_se}
arch_cells['ar_nn'] = ['']
elif arch_type == 'res_bnswish':
arch_cells = dict()
arch_cells['normal_enc'] = {'conv_branch': ['res_bnswish', 'res_bnswish'], 'se': use_se}
arch_cells['down_enc'] = {'conv_branch': ['res_bnswish', 'res_bnswish'], 'se': use_se}
arch_cells['normal_dec'] = {'conv_branch': ['res_bnswish', 'res_bnswish'], 'se': use_se}
arch_cells['up_dec'] = {'conv_branch': ['res_bnswish', 'res_bnswish'], 'se': use_se}
arch_cells['normal_pre'] = {'conv_branch': ['res_bnswish', 'res_bnswish'], 'se': use_se}
arch_cells['down_pre'] = {'conv_branch': ['res_bnswish', 'res_bnswish'], 'se': use_se}
arch_cells['normal_post'] = {'conv_branch': ['res_bnswish', 'res_bnswish'], 'se': use_se}
arch_cells['up_post'] = {'conv_branch': ['res_bnswish', 'res_bnswish'], 'se': use_se}
arch_cells['ar_nn'] = ['']
elif arch_type == 'res_bnswish2':
arch_cells = dict()
arch_cells['normal_enc'] = {'conv_branch': ['res_bnswish_x2'], 'se': use_se}
arch_cells['down_enc'] = {'conv_branch': ['res_bnswish_x2'], 'se': use_se}
arch_cells['normal_dec'] = {'conv_branch': ['res_bnswish_x2'], 'se': use_se}
arch_cells['up_dec'] = {'conv_branch': ['res_bnswish_x2'], 'se': use_se}
arch_cells['normal_pre'] = {'conv_branch': ['res_bnswish_x2'], 'se': use_se}
arch_cells['down_pre'] = {'conv_branch': ['res_bnswish_x2'], 'se': use_se}
arch_cells['normal_post'] = {'conv_branch': ['res_bnswish_x2'], 'se': use_se}
arch_cells['up_post'] = {'conv_branch': ['res_bnswish_x2'], 'se': use_se}
arch_cells['ar_nn'] = ['']
elif arch_type == 'res_mbconv_attn':
arch_cells = dict()
arch_cells['normal_enc'] = {'conv_branch': ['res_bnswish', 'res_bnswish', ], 'se': use_se, 'attn_type': 'attn'}
arch_cells['down_enc'] = {'conv_branch': ['res_bnswish', 'res_bnswish'], 'se': use_se, 'attn_type': 'attn'}
arch_cells['normal_dec'] = {'conv_branch': ['mconv_e6k5g0'], 'se': use_se, 'attn_type': 'attn'}
arch_cells['up_dec'] = {'conv_branch': ['mconv_e6k5g0'], 'se': use_se, 'attn_type': 'attn'}
arch_cells['normal_pre'] = {'conv_branch': ['res_bnswish', 'res_bnswish'], 'se': use_se}
arch_cells['down_pre'] = {'conv_branch': ['res_bnswish', 'res_bnswish'], 'se': use_se}
arch_cells['normal_post'] = {'conv_branch': ['mconv_e3k5g0'], 'se': use_se}
arch_cells['up_post'] = {'conv_branch': ['mconv_e3k5g0'], 'se': use_se}
arch_cells['ar_nn'] = ['']
elif arch_type == 'res_mbconv_attn_half':
arch_cells = dict()
arch_cells['normal_enc'] = {'conv_branch': ['res_bnswish', 'res_bnswish'], 'se': use_se}
arch_cells['down_enc'] = {'conv_branch': ['res_bnswish', 'res_bnswish'], 'se': use_se}
arch_cells['normal_dec'] = {'conv_branch': ['mconv_e6k5g0'], 'se': use_se, 'attn_type': 'attn'}
arch_cells['up_dec'] = {'conv_branch': ['mconv_e6k5g0'], 'se': use_se, 'attn_type': 'attn'}
arch_cells['normal_pre'] = {'conv_branch': ['res_bnswish', 'res_bnswish'], 'se': use_se}
arch_cells['down_pre'] = {'conv_branch': ['res_bnswish', 'res_bnswish'], 'se': use_se}
arch_cells['normal_post'] = {'conv_branch': ['mconv_e3k5g0'], 'se': use_se}
arch_cells['up_post'] = {'conv_branch': ['mconv_e3k5g0'], 'se': use_se}
arch_cells['ar_nn'] = ['']
else:
raise NotImplementedError
return arch_cells
def groups_per_scale(num_scales, num_groups_per_scale):
g = []
n = num_groups_per_scale
for s in range(num_scales):
assert n >= 1
g.append(n)
return g
class PositionalEmbedding(nn.Module):
def __init__(self, embedding_dim, scale):
super(PositionalEmbedding, self).__init__()
self.embedding_dim = embedding_dim
self.scale = scale
def forward(self, timesteps):
assert len(timesteps.shape) == 1
timesteps = timesteps * self.scale
half_dim = self.embedding_dim // 2
emb = math.log(10000) / (half_dim - 1)
emb = torch.exp(torch.arange(half_dim) * -emb)
emb = emb.to(device=timesteps.device)
emb = timesteps[:, None] * emb[None, :]
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1)
return emb
class RandomFourierEmbedding(nn.Module):
def __init__(self, embedding_dim, scale):
super(RandomFourierEmbedding, self).__init__()
self.w = nn.Parameter(torch.randn(size=(1, embedding_dim // 2)) * scale, requires_grad=False)
def forward(self, timesteps):
emb = torch.mm(timesteps[:, None], self.w * 2 * 3.14159265359)
return torch.cat([torch.sin(emb), torch.cos(emb)], dim=1)
def init_temb_fun(embedding_type, embedding_scale, embedding_dim):
if embedding_type == 'positional':
temb_fun = PositionalEmbedding(embedding_dim, embedding_scale)
elif embedding_type == 'fourier':
temb_fun = RandomFourierEmbedding(embedding_dim, embedding_scale)
else:
raise NotImplementedError
return temb_fun
def get_dae_model(args, num_input_channels):
if args.dae_arch == 'ncsnpp':
# we need to import NCSNpp after processes are launched on the multi gpu training.
from score_sde.ncsnpp import NCSNpp
dae = NCSNpp(args, num_input_channels)
else:
raise NotImplementedError
return dae
def symmetrize_image_data(images):
return 2.0 * images - 1.0
def unsymmetrize_image_data(images):
return (images + 1.) / 2.
def normalize_symmetric(images):
"""
Normalize images by dividing the largest intensity. Used for visualizing the intermediate steps.
"""
b = images.shape[0]
m, _ = torch.max(torch.abs(images).view(b, -1), dim=1)
images /= (m.view(b, 1, 1, 1) + 1e-3)
return images
@torch.jit.script
def soft_clamp5(x: torch.Tensor):
return x.div(5.).tanh_().mul(5.) # 5. * torch.tanh(x / 5.) <--> soft differentiable clamp between [-5, 5]
@torch.jit.script
def soft_clamp(x: torch.Tensor, a: torch.Tensor):
return x.div(a).tanh_().mul(a)
class SoftClamp5(nn.Module):
def __init__(self):
super(SoftClamp5, self).__init__()
def forward(self, x):
return soft_clamp5(x)
def override_architecture_fields(args, stored_args, logging):
# list of architecture parameters used in NVAE:
architecture_fields = ['arch_instance', 'num_nf', 'num_latent_scales', 'num_groups_per_scale',
'num_latent_per_group', 'num_channels_enc', 'num_preprocess_blocks',
'num_preprocess_cells', 'num_cell_per_cond_enc', 'num_channels_dec',
'num_postprocess_blocks', 'num_postprocess_cells', 'num_cell_per_cond_dec',
'decoder_dist', 'num_x_bits', 'log_sig_q_scale',
'progressive_input_vae', 'channel_mult']
# backward compatibility
""" We have broken backward compatibility. No need to se these manually
if not hasattr(stored_args, 'log_sig_q_scale'):
logging.info('*** Setting %s manually ****', 'log_sig_q_scale')
setattr(stored_args, 'log_sig_q_scale', 5.)
if not hasattr(stored_args, 'latent_grad_cutoff'):
logging.info('*** Setting %s manually ****', 'latent_grad_cutoff')
setattr(stored_args, 'latent_grad_cutoff', 0.)
if not hasattr(stored_args, 'progressive_input_vae'):
logging.info('*** Setting %s manually ****', 'progressive_input_vae')
setattr(stored_args, 'progressive_input_vae', 'none')
if not hasattr(stored_args, 'progressive_output_vae'):
logging.info('*** Setting %s manually ****', 'progressive_output_vae')
setattr(stored_args, 'progressive_output_vae', 'none')
"""
if not hasattr(stored_args, 'num_x_bits'):
logging.info('*** Setting %s manually ****', 'num_x_bits')
setattr(stored_args, 'num_x_bits', 8)
if not hasattr(stored_args, 'channel_mult'):
logging.info('*** Setting %s manually ****', 'channel_mult')
setattr(stored_args, 'channel_mult', [1, 2])
for f in architecture_fields:
if not hasattr(args, f) or getattr(args, f) != getattr(stored_args, f):
logging.info('Setting %s from loaded checkpoint', f)
setattr(args, f, getattr(stored_args, f))
def init_processes(rank, size, fn, args):
""" Initialize the distributed environment. """
os.environ['MASTER_ADDR'] = args.master_address
os.environ['MASTER_PORT'] = '6020'
torch.cuda.set_device(args.local_rank)
dist.init_process_group(backend='nccl', init_method='env://', rank=rank, world_size=size)
fn(args)
dist.barrier()
dist.destroy_process_group()
def sample_rademacher_like(y):
return torch.randint(low=0, high=2, size=y.shape, device='cuda') * 2 - 1
def sample_gaussian_like(y):
return torch.randn_like(y, device='cuda')
def trace_df_dx_hutchinson(f, x, noise, no_autograd):
"""
Hutchinson's trace estimator for Jacobian df/dx, O(1) call to autograd
"""
if no_autograd:
# the following is compatible with checkpointing
torch.sum(f * noise).backward()
# torch.autograd.backward(tensors=[f], grad_tensors=[noise])
jvp = x.grad
trJ = torch.sum(jvp * noise, dim=[1, 2, 3])
x.grad = None
else:
jvp = torch.autograd.grad(f, x, noise, create_graph=False)[0]
trJ = torch.sum(jvp * noise, dim=[1, 2, 3])
# trJ = torch.einsum('bijk,bijk->b', jvp, noise) # we could test if there's a speed difference in einsum vs sum
return trJ
def different_p_q_objectives(iw_sample_p, iw_sample_q):
assert iw_sample_p in ['ll_uniform', 'drop_all_uniform', 'll_iw', 'drop_all_iw', 'drop_sigma2t_iw', 'rescale_iw',
'drop_sigma2t_uniform']
assert iw_sample_q in ['reweight_p_samples', 'll_uniform', 'll_iw']
# In these cases, we reuse the likelihood-based p-objective (either the uniform sampling version or the importance
# sampling version) also for q.
if iw_sample_p in ['ll_uniform', 'll_iw'] and iw_sample_q == 'reweight_p_samples':
return False
# In these cases, we are using a non-likelihood-based objective for p, and hence definitly need to use another q
# objective.
else:
return True
# def decoder_output(dataset, logits, fixed_log_scales=None):
# if dataset in {'cifar10', 'celeba_64', 'celeba_256', 'imagenet_32', 'imagenet_64', 'ffhq',
# 'lsun_bedroom_128', 'lsun_bedroom_256', 'mnist', 'omniglot',
# 'lsun_church_256'}:
# return PixelNormal(logits, fixed_log_scales)
# else:
# raise NotImplementedError
def get_mixed_prediction(mixed_prediction, param, mixing_logit, mixing_component=None):
if mixed_prediction:
assert mixing_component is not None, 'Provide mixing component when mixed_prediction is enabled.'
coeff = torch.sigmoid(mixing_logit)
param = (1 - coeff) * mixing_component + coeff * param
return param
def set_vesde_sigma_max(args, vae, train_queue, logging, is_distributed):
logging.info('')
logging.info('Calculating max. pairwise distance in latent space to set sigma2_max for VESDE...')
eps_list = []
vae.eval()
for step, x in enumerate(train_queue):
x = x[0] if len(x) > 1 else x
x = x.cuda()
x = symmetrize_image_data(x)
# run vae
with autocast(enabled=args.autocast_train):
with torch.set_grad_enabled(False):
logits, all_log_q, all_eps = vae(x)
eps = torch.cat(all_eps, dim=1)
eps_list.append(eps.detach())
# concat eps tensor on each GPU and then gather all on all GPUs
eps_this_rank = torch.cat(eps_list, dim=0)
if is_distributed:
eps_all_gathered = [torch.zeros_like(eps_this_rank)] * dist.get_world_size()
dist.all_gather(eps_all_gathered, eps_this_rank)
eps_full = torch.cat(eps_all_gathered, dim=0)
else:
eps_full = eps_this_rank
# max pairwise distance squared between all latent encodings, is computed on CPU
eps_full = eps_full.cpu().float()
eps_full = eps_full.flatten(start_dim=1).unsqueeze(0)
max_pairwise_dist_sqr = torch.cdist(eps_full, eps_full).square().max()
max_pairwise_dist_sqr = max_pairwise_dist_sqr.cuda()
# to be safe, we broadcast to all GPUs if we are in distributed environment. Shouldn't be necessary in principle.
if is_distributed:
dist.broadcast(max_pairwise_dist_sqr, src=0)
args.sigma2_max = max_pairwise_dist_sqr.item()
logging.info('Done! Set args.sigma2_max set to {}'.format(args.sigma2_max))
logging.info('')
return args
def mask_inactive_variables(x, is_active):
x = x * is_active
return x
def common_x_operations(x, num_x_bits):
x = x[0] if len(x) > 1 else x
x = x.cuda()
# change bit length
x = change_bit_length(x, num_x_bits)
x = symmetrize_image_data(x)
return x
|