File size: 10,750 Bytes
fc6af43
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
#include <glm/gtc/constants.hpp>
#include <glm/gtc/quaternion.hpp>
#include <glm/gtc/matrix_transform.hpp>
#include <glm/ext/matrix_relational.hpp>
#include <glm/ext/vector_relational.hpp>
#include <glm/ext/scalar_relational.hpp>
#include <glm/glm.hpp>
#include <vector>

int test_quat_angle()
{
	int Error = 0;

	{
		glm::quat Q = glm::angleAxis(glm::pi<float>() * 0.25f, glm::vec3(0, 0, 1));
		glm::quat N = glm::normalize(Q);
		float L = glm::length(N);
		Error += glm::equal(L, 1.0f, 0.01f) ? 0 : 1;
		float A = glm::angle(N);
		Error += glm::equal(A, glm::pi<float>() * 0.25f, 0.01f) ? 0 : 1;
	}
	{
		glm::quat Q = glm::angleAxis(glm::pi<float>() * 0.25f, glm::normalize(glm::vec3(0, 1, 1)));
		glm::quat N = glm::normalize(Q);
		float L = glm::length(N);
		Error += glm::equal(L, 1.0f, 0.01f) ? 0 : 1;
		float A = glm::angle(N);
		Error += glm::equal(A, glm::pi<float>() * 0.25f, 0.01f) ? 0 : 1;
	}
	{
		glm::quat Q = glm::angleAxis(glm::pi<float>() * 0.25f, glm::normalize(glm::vec3(1, 2, 3)));
		glm::quat N = glm::normalize(Q);
		float L = glm::length(N);
		Error += glm::equal(L, 1.0f, 0.01f) ? 0 : 1;
		float A = glm::angle(N);
		Error += glm::equal(A, glm::pi<float>() * 0.25f, 0.01f) ? 0 : 1;
	}

	return Error;
}

int test_quat_angleAxis()
{
	int Error = 0;

	glm::quat A = glm::angleAxis(0.f, glm::vec3(0.f, 0.f, 1.f));
	glm::quat B = glm::angleAxis(glm::pi<float>() * 0.5f, glm::vec3(0, 0, 1));
	glm::quat C = glm::mix(A, B, 0.5f);
	glm::quat D = glm::angleAxis(glm::pi<float>() * 0.25f, glm::vec3(0, 0, 1));

	Error += glm::equal(C.x, D.x, 0.01f) ? 0 : 1;
	Error += glm::equal(C.y, D.y, 0.01f) ? 0 : 1;
	Error += glm::equal(C.z, D.z, 0.01f) ? 0 : 1;
	Error += glm::equal(C.w, D.w, 0.01f) ? 0 : 1;

	return Error;
}

int test_quat_mix()
{
	int Error = 0;

	glm::quat A = glm::angleAxis(0.f, glm::vec3(0.f, 0.f, 1.f));
	glm::quat B = glm::angleAxis(glm::pi<float>() * 0.5f, glm::vec3(0, 0, 1));
	glm::quat C = glm::mix(A, B, 0.5f);
	glm::quat D = glm::angleAxis(glm::pi<float>() * 0.25f, glm::vec3(0, 0, 1));

	Error += glm::equal(C.x, D.x, 0.01f) ? 0 : 1;
	Error += glm::equal(C.y, D.y, 0.01f) ? 0 : 1;
	Error += glm::equal(C.z, D.z, 0.01f) ? 0 : 1;
	Error += glm::equal(C.w, D.w, 0.01f) ? 0 : 1;

	return Error;
}

int test_quat_normalize()
{
	int Error(0);

	{
		glm::quat Q = glm::angleAxis(glm::pi<float>() * 0.25f, glm::vec3(0, 0, 1));
		glm::quat N = glm::normalize(Q);
		float L = glm::length(N);
		Error += glm::equal(L, 1.0f, 0.000001f) ? 0 : 1;
	}
	{
		glm::quat Q = glm::angleAxis(glm::pi<float>() * 0.25f, glm::vec3(0, 0, 2));
		glm::quat N = glm::normalize(Q);
		float L = glm::length(N);
		Error += glm::equal(L, 1.0f, 0.000001f) ? 0 : 1;
	}
	{
		glm::quat Q = glm::angleAxis(glm::pi<float>() * 0.25f, glm::vec3(1, 2, 3));
		glm::quat N = glm::normalize(Q);
		float L = glm::length(N);
		Error += glm::equal(L, 1.0f, 0.000001f) ? 0 : 1;
	}

	return Error;
}

int test_quat_euler()
{
	int Error = 0;

	{
		glm::quat q(1.0f, 0.0f, 0.0f, 1.0f);
		float Roll = glm::roll(q);
		float Pitch = glm::pitch(q);
		float Yaw = glm::yaw(q);
		glm::vec3 Angles = glm::eulerAngles(q);
		Error += glm::all(glm::equal(Angles, glm::vec3(Pitch, Yaw, Roll), 0.000001f)) ? 0 : 1;
	}

	{
		glm::dquat q(1.0, 0.0, 0.0, 1.0);
		double Roll = glm::roll(q);
		double Pitch = glm::pitch(q);
		double Yaw = glm::yaw(q);
		glm::dvec3 Angles = glm::eulerAngles(q);
		Error += glm::all(glm::equal(Angles, glm::dvec3(Pitch, Yaw, Roll), 0.000001)) ? 0 : 1;
	}

	return Error;
}

int test_quat_slerp()
{
	int Error = 0;

	float const Epsilon = 0.0001f;//glm::epsilon<float>();

	float sqrt2 = std::sqrt(2.0f)/2.0f;
	glm::quat id(static_cast<float>(1), static_cast<float>(0), static_cast<float>(0), static_cast<float>(0));
	glm::quat Y90rot(sqrt2, 0.0f, sqrt2, 0.0f);
	glm::quat Y180rot(0.0f, 0.0f, 1.0f, 0.0f);

	// Testing a == 0
	// Must be id
	glm::quat id2 = glm::slerp(id, Y90rot, 0.0f);
	Error += glm::all(glm::equal(id, id2, Epsilon)) ? 0 : 1;

	// Testing a == 1
	// Must be 90� rotation on Y : 0 0.7 0 0.7
	glm::quat Y90rot2 = glm::slerp(id, Y90rot, 1.0f);
	Error += glm::all(glm::equal(Y90rot, Y90rot2, Epsilon)) ? 0 : 1;

	// Testing standard, easy case
	// Must be 45� rotation on Y : 0 0.38 0 0.92
	glm::quat Y45rot1 = glm::slerp(id, Y90rot, 0.5f);

	// Testing reverse case
	// Must be 45� rotation on Y : 0 0.38 0 0.92
	glm::quat Ym45rot2 = glm::slerp(Y90rot, id, 0.5f);

	// Testing against full circle around the sphere instead of shortest path
	// Must be 45� rotation on Y
	// certainly not a 135� rotation
	glm::quat Y45rot3 = glm::slerp(id , -Y90rot, 0.5f);
	float Y45angle3 = glm::angle(Y45rot3);
	Error += glm::equal(Y45angle3, glm::pi<float>() * 0.25f, Epsilon) ? 0 : 1;
	Error += glm::all(glm::equal(Ym45rot2, Y45rot3, Epsilon)) ? 0 : 1;

	// Same, but inverted
	// Must also be 45� rotation on Y :  0 0.38 0 0.92
	// -0 -0.38 -0 -0.92 is ok too
	glm::quat Y45rot4 = glm::slerp(-Y90rot, id, 0.5f);
	Error += glm::all(glm::equal(Ym45rot2, -Y45rot4, Epsilon)) ? 0 : 1;

	// Testing q1 = q2
	// Must be 90� rotation on Y : 0 0.7 0 0.7
	glm::quat Y90rot3 = glm::slerp(Y90rot, Y90rot, 0.5f);
	Error += glm::all(glm::equal(Y90rot, Y90rot3, Epsilon)) ? 0 : 1;

	// Testing 180� rotation
	// Must be 90� rotation on almost any axis that is on the XZ plane
	glm::quat XZ90rot = glm::slerp(id, -Y90rot, 0.5f);
	float XZ90angle = glm::angle(XZ90rot); // Must be PI/4 = 0.78;
	Error += glm::equal(XZ90angle, glm::pi<float>() * 0.25f, Epsilon) ? 0 : 1;

	// Testing almost equal quaternions (this test should pass through the linear interpolation)
	// Must be 0 0.00X 0 0.99999
	glm::quat almostid = glm::slerp(id, glm::angleAxis(0.1f, glm::vec3(0.0f, 1.0f, 0.0f)), 0.5f);

	// Testing quaternions with opposite sign
	{
		glm::quat a(-1, 0, 0, 0);

		glm::quat result = glm::slerp(a, id, 0.5f);

		Error += glm::equal(glm::pow(glm::dot(id, result), 2.f), 1.f, 0.01f) ? 0 : 1;
	}

	return Error;
}

int test_quat_slerp_spins()
{
    int Error = 0;

    float const Epsilon = 0.0001f;//glm::epsilon<float>();

    float sqrt2 = std::sqrt(2.0f) / 2.0f;
    glm::quat id(static_cast<float>(1), static_cast<float>(0), static_cast<float>(0), static_cast<float>(0));
    glm::quat Y90rot(sqrt2, 0.0f, sqrt2, 0.0f);
    glm::quat Y180rot(0.0f, 0.0f, 1.0f, 0.0f);

    // Testing a == 0, k == 1
    // Must be id
    glm::quat id2 = glm::slerp(id, id, 1.0f, 1);
    Error += glm::all(glm::equal(id, id2, Epsilon)) ? 0 : 1;

    // Testing a == 1, k == 2
    // Must be id
    glm::quat id3 = glm::slerp(id, id, 1.0f, 2);
    Error += glm::all(glm::equal(id, id3, Epsilon)) ? 0 : 1;

    // Testing a == 1, k == 1
    // Must be 90� rotation on Y : 0 0.7 0 0.7
    // Negative quaternion is representing same orientation
    glm::quat Y90rot2 = glm::slerp(id, Y90rot, 1.0f, 1);
    Error += glm::all(glm::equal(Y90rot, -Y90rot2, Epsilon)) ? 0 : 1;

    // Testing a == 1, k == 2
    // Must be id
    glm::quat Y90rot3 = glm::slerp(id, Y90rot, 8.0f / 9.0f, 2);
    Error += glm::all(glm::equal(id, Y90rot3, Epsilon)) ? 0 : 1;

    // Testing a == 1, k == 1
    // Must be 90� rotation on Y : 0 0.7 0 0.7
    glm::quat Y90rot4 = glm::slerp(id, Y90rot, 0.2f, 1);
    Error += glm::all(glm::equal(Y90rot, Y90rot4, Epsilon)) ? 0 : 1;

    // Testing reverse case
    // Must be 45� rotation on Y : 0 0.38 0 0.92
    // Negative quaternion is representing same orientation
    glm::quat Ym45rot2 = glm::slerp(Y90rot, id, 0.9f, 1);
    glm::quat Ym45rot3 = glm::slerp(Y90rot, id, 0.5f);
    Error += glm::all(glm::equal(-Ym45rot2, Ym45rot3, Epsilon)) ? 0 : 1;

    // Testing against full circle around the sphere instead of shortest path
    // Must be 45� rotation on Y
    // certainly not a 135� rotation
    glm::quat Y45rot3 = glm::slerp(id, -Y90rot, 0.5f, 0);
    float Y45angle3 = glm::angle(Y45rot3);
    Error += glm::equal(Y45angle3, glm::pi<float>() * 0.25f, Epsilon) ? 0 : 1;
    Error += glm::all(glm::equal(Ym45rot3, Y45rot3, Epsilon)) ? 0 : 1;

    // Same, but inverted
    // Must also be 45� rotation on Y :  0 0.38 0 0.92
    // -0 -0.38 -0 -0.92 is ok too
    glm::quat Y45rot4 = glm::slerp(-Y90rot, id, 0.5f, 0);
    Error += glm::all(glm::equal(Ym45rot2, Y45rot4, Epsilon)) ? 0 : 1;

    // Testing q1 = q2 k == 2
    // Must be 90� rotation on Y : 0 0.7 0 0.7
    glm::quat Y90rot5 = glm::slerp(Y90rot, Y90rot, 0.5f, 2);
    Error += glm::all(glm::equal(Y90rot, Y90rot5, Epsilon)) ? 0 : 1;

    // Testing 180� rotation
    // Must be 90� rotation on almost any axis that is on the XZ plane
    glm::quat XZ90rot = glm::slerp(id, -Y90rot, 0.5f, 1);
    float XZ90angle = glm::angle(XZ90rot); // Must be PI/4 = 0.78;
    Error += glm::equal(XZ90angle, glm::pi<float>() * 1.25f, Epsilon) ? 0 : 1;

    // Testing rotation over long arc
    // Distance from id to 90� is 270�, so 2/3 of it should be 180�
    // Negative quaternion is representing same orientation
    glm::quat Neg90rot = glm::slerp(id, Y90rot, 2.0f / 3.0f, -1);
    Error += glm::all(glm::equal(Y180rot, -Neg90rot, Epsilon)) ? 0 : 1;

    return Error;
}

static int test_quat_mul_vec()
{
	int Error(0);

	glm::quat q = glm::angleAxis(glm::pi<float>() * 0.5f, glm::vec3(0, 0, 1));
	glm::vec3 v(1, 0, 0);
	glm::vec3 u(q * v);
	glm::vec3 w(u * q);

	Error += glm::all(glm::equal(v, w, 0.01f)) ? 0 : 1;

	return Error;
}

static int test_mul()
{
	int Error = 0;

	glm::quat temp1 = glm::normalize(glm::quat(1.0f, glm::vec3(0.0, 1.0, 0.0)));
	glm::quat temp2 = glm::normalize(glm::quat(0.5f, glm::vec3(1.0, 0.0, 0.0)));

	glm::vec3 transformed0 = (temp1 * glm::vec3(0.0, 1.0, 0.0) * glm::inverse(temp1));
	glm::vec3 temp4 = temp2 * transformed0 * glm::inverse(temp2);

	glm::quat temp5 = glm::normalize(temp1 * temp2);
	glm::vec3 temp6 = temp5 * glm::vec3(0.0, 1.0, 0.0) * glm::inverse(temp5);

	glm::quat temp7(1.0f, glm::vec3(0.0, 1.0, 0.0));

	temp7 *= temp5;
	temp7 *= glm::inverse(temp5);

	Error += glm::any(glm::notEqual(temp7, glm::quat(1.0f, glm::vec3(0.0, 1.0, 0.0)), glm::epsilon<float>())) ? 1 : 0;

	return Error;
}

int test_identity()
{
	int Error = 0;

	glm::quat const Q = glm::identity<glm::quat>();

	Error += glm::all(glm::equal(Q, glm::quat(1, 0, 0, 0), 0.0001f)) ? 0 : 1;
	Error += glm::any(glm::notEqual(Q, glm::quat(1, 0, 0, 0), 0.0001f)) ? 1 : 0;

	glm::mat4 const M = glm::identity<glm::mat4x4>();
	glm::mat4 const N(1.0f);

	Error += glm::all(glm::equal(M, N, 0.0001f)) ? 0 : 1;

	return Error;
}

int main()
{
	int Error = 0;

	Error += test_mul();
	Error += test_quat_mul_vec();
	Error += test_quat_angle();
	Error += test_quat_angleAxis();
	Error += test_quat_mix();
	Error += test_quat_normalize();
	Error += test_quat_euler();
	Error += test_quat_slerp();
    Error += test_quat_slerp_spins();
	Error += test_identity();

	return Error;
}