File size: 17,026 Bytes
4c35d22
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
import re
import torch
import torch.nn as nn

from copy import deepcopy
from torch import Tensor
from torch.nn import Module, Linear, init
from typing import Any, Mapping

from diffusion.model.nets import PixArtMSBlock, PixArtMS, PixArt, MVEncoder
from diffusion.model.nets.PixArt import get_2d_sincos_pos_embed
from diffusion.model.utils import auto_grad_checkpoint


# The implementation of ControlNet-Half architrecture
# https://github.com/lllyasviel/ControlNet/discussions/188
class ControlT2IDitBlockHalf(Module):
    def __init__(self, base_block: PixArtMSBlock, block_index: 0, zero_init=True, base_size=None) -> None:
        super().__init__()
        self.copied_block = deepcopy(base_block)
        self.block_index = block_index

        for p in self.copied_block.parameters():
            p.requires_grad_(True)

        self.copied_block.load_state_dict(base_block.state_dict())
        self.copied_block.train()
        
        self.hidden_size = hidden_size = base_block.hidden_size
        if self.block_index == 0:
            self.before_proj = Linear(hidden_size, hidden_size)
            # we still keep the before_proj as zero initialed
            init.zeros_(self.before_proj.weight)
            init.zeros_(self.before_proj.bias)
        self.after_proj = Linear(hidden_size, hidden_size)
        if zero_init:
            init.zeros_(self.after_proj.weight)
            init.zeros_(self.after_proj.bias)

    def forward(self, x, y, t, mask=None, c=None, epipolar_constrains=None, cam_distances=None, n_views=None):
        if self.block_index == 0:
            # the first block
            c = self.before_proj(c)
            c = self.copied_block(x + c, y, t, mask, epipolar_constrains=epipolar_constrains, cam_distances=cam_distances, n_views=n_views)
            c_skip = self.after_proj(c)
        else:
            # load from previous c and produce the c for skip connection
            c = self.copied_block(c, y, t, mask, epipolar_constrains=epipolar_constrains, cam_distances=cam_distances, n_views=n_views)
            c_skip = self.after_proj(c)
        
        return c, c_skip
        

# The implementation of ControlPixArtHalf net
class ControlPixArtHalf(Module):
    # only support single res model
    def __init__(self, base_model: PixArt, copy_blocks_num: int = 13) -> None:
        super().__init__()
        self.base_model = base_model.eval()
        self.controlnet = []
        self.copy_blocks_num = copy_blocks_num
        self.total_blocks_num = len(base_model.blocks)
        for p in self.base_model.parameters():
            p.requires_grad_(False)

        # Copy first copy_blocks_num block
        for i in range(copy_blocks_num):
            self.controlnet.append(ControlT2IDitBlockHalf(base_model.blocks[i], i))
        self.controlnet = nn.ModuleList(self.controlnet)
    
    def __getattr__(self, name: str) -> Tensor or Module:
        if name in [
            'base_model', 
            'controlnet', 
            'encoder',
            'controlnet_t_block',
            'noise_embedding',
        ]:
            return super().__getattr__(name)
        else:
            return getattr(self.base_model, name)

    def forward_c(self, c):
        self.h, self.w = c.shape[-2]//self.patch_size, c.shape[-1]//self.patch_size
        pos_embed = torch.from_numpy(get_2d_sincos_pos_embed(self.pos_embed.shape[-1], (self.h, self.w), pe_interpolation=self.pe_interpolation, base_size=self.base_size)).unsqueeze(0).to(c.device).to(self.dtype)
        return self.x_embedder(c) + pos_embed if c is not None else c

    # def forward(self, x, t, c, **kwargs):
    #     return self.base_model(x, t, c=self.forward_c(c), **kwargs)
    def forward(self, x, timestep, y, mask=None, data_info=None, c=None, **kwargs):
        # modify the original PixArtMS forward function
        if c is not None:
            c = c.to(self.dtype)
            c = self.forward_c(c)
        """
        Forward pass of PixArt.
        x: (N, C, H, W) tensor of spatial inputs (images or latent representations of images)
        t: (N,) tensor of diffusion timesteps
        y: (N, 1, 120, C) tensor of class labels
        """
        x = x.to(self.dtype)
        timestep = timestep.to(self.dtype)
        y = y.to(self.dtype)
        pos_embed = self.pos_embed.to(self.dtype)
        self.h, self.w = x.shape[-2]//self.patch_size, x.shape[-1]//self.patch_size
        x = self.x_embedder(x) + pos_embed  # (N, T, D), where T = H * W / patch_size ** 2
        t = self.t_embedder(timestep.to(x.dtype))  # (N, D)
        t0 = self.t_block(t)
        y = self.y_embedder(y, self.training)  # (N, 1, L, D)
        if mask is not None:
            if mask.shape[0] != y.shape[0]:
                mask = mask.repeat(y.shape[0] // mask.shape[0], 1)
            mask = mask.squeeze(1).squeeze(1)
            y = y.squeeze(1).masked_select(mask.unsqueeze(-1) != 0).view(1, -1, x.shape[-1])
            y_lens = mask.sum(dim=1).tolist()
        else:
            y_lens = [y.shape[2]] * y.shape[0]
            y = y.squeeze(1).view(1, -1, x.shape[-1])

        # define the first layer
        x = auto_grad_checkpoint(self.base_model.blocks[0], x, y, t0, y_lens, **kwargs)  # (N, T, D) #support grad checkpoint

        if c is not None:
            # update c
            for index in range(1, self.copy_blocks_num + 1):
                c, c_skip = auto_grad_checkpoint(self.controlnet[index - 1], x, y, t0, y_lens, c, **kwargs)
                x = auto_grad_checkpoint(self.base_model.blocks[index], x + c_skip, y, t0, y_lens, **kwargs)
        
            # update x
            for index in range(self.copy_blocks_num + 1, self.total_blocks_num):
                x = auto_grad_checkpoint(self.base_model.blocks[index], x, y, t0, y_lens, **kwargs)
        else:
            for index in range(1, self.total_blocks_num):
                x = auto_grad_checkpoint(self.base_model.blocks[index], x, y, t0, y_lens, **kwargs)

        x = self.final_layer(x, t)  # (N, T, patch_size ** 2 * out_channels)
        x = self.unpatchify(x)  # (N, out_channels, H, W)
        return x

    def forward_with_dpmsolver(self, x, t, y, data_info, c, **kwargs):
        model_out = self.forward(x, t, y, data_info=data_info, c=c, **kwargs)
        return model_out.chunk(2, dim=1)[0]

    def forward_with_cfg(self, x, timestep, y, cfg_scale, data_info, c, **kwargs):
        """
        Forward pass of PixArt, but also batches the unconditional forward pass for classifier-free guidance.
        """
        # https://github.com/openai/glide-text2im/blob/main/notebooks/text2im.ipynb
        half = x[: len(x) // 2]
        combined = torch.cat([half, half], dim=0)
        model_out = self.forward(combined, timestep, y, data_info=data_info, c=c)
        eps, rest = model_out[:, :3], model_out[:, 3:]
        cond_eps, uncond_eps = torch.split(eps, len(eps) // 2, dim=0)
        half_eps = uncond_eps + cfg_scale * (cond_eps - uncond_eps)
        eps = torch.cat([half_eps, half_eps], dim=0)
        return torch.cat([eps, rest], dim=1)
        
    def load_state_dict(self, state_dict: Mapping[str, Any], strict: bool = True):
        if all((k.startswith(('base_model', 'controlnet', 'encoder', 'controlnet_t_block', 'noise_embedding'))) for k in state_dict.keys()):
            return super().load_state_dict(state_dict, strict)
        else:
            new_key = {}
            for k in state_dict.keys():
                new_key[k] = re.sub(r"(blocks\.\d+)(.*)", r"\1.base_block\2", k)
            for k, v in new_key.items():
                if k != v:
                    print(f"replace {k} to {v}")
                    state_dict[v] = state_dict.pop(k)

            return self.base_model.load_state_dict(state_dict, strict)
    
    def unpatchify(self, x):
        """
        x: (N, T, patch_size**2 * C)
        imgs: (N, H, W, C)
        """
        c = self.out_channels
        p = self.x_embedder.patch_size[0]
        assert self.h * self.w == x.shape[1]

        x = x.reshape(shape=(x.shape[0], self.h, self.w, p, p, c))
        x = torch.einsum('nhwpqc->nchpwq', x)
        imgs = x.reshape(shape=(x.shape[0], c, self.h * p, self.w * p))
        return imgs

    @property
    def dtype(self):
        return next(self.parameters()).dtype


# The implementation for PixArtMS_Half + 1024 resolution
class ControlPixArtMSHalf(ControlPixArtHalf):
    # support multi-scale res model (multi-scale model can also be applied to single reso training & inference)
    def __init__(self, base_model: PixArtMS, copy_blocks_num: int = 13) -> None:
        super().__init__(base_model=base_model, copy_blocks_num=copy_blocks_num)

    def forward(self, x, timestep, y, mask=None, data_info=None, c=None, need_forward_c=True, **kwargs):
        # modify the original PixArtMS forward function
        """
        Forward pass of PixArt.
        x: (N, C, H, W) tensor of spatial inputs (images or latent representations of images)
        t: (N,) tensor of diffusion timesteps
        y: (N, 1, 120, C) tensor of class labels
        """
        if c is not None and need_forward_c:
            c = c.to(self.dtype)
            c = self.forward_c(c)

        bs = x.shape[0]
        x = x.to(self.dtype)
        timestep = timestep.to(self.dtype)
        y = y.to(self.dtype)
        self.h, self.w = x.shape[-2]//self.patch_size, x.shape[-1]//self.patch_size
        pos_embed = torch.from_numpy(
            get_2d_sincos_pos_embed(
                self.pos_embed.shape[-1], (self.h, self.w), pe_interpolation=self.pe_interpolation,
                base_size=self.base_size
            )
        ).unsqueeze(0).to(x.device).to(self.dtype)

        x = self.x_embedder(x) + pos_embed  # (N, T, D), where T = H * W / patch_size ** 2
        t = self.t_embedder(timestep)  # (N, D)

        if self.micro_conditioning:
            c_size, ar = data_info['img_hw'].to(self.dtype), data_info['aspect_ratio'].to(self.dtype)
            csize = self.csize_embedder(c_size, bs)  # (N, D)
            ar = self.ar_embedder(ar, bs)  # (N, D)
            t = t + torch.cat([csize, ar], dim=1)

        t0 = self.t_block(t)
        y = self.y_embedder(y, self.training)  # (N, D)

        if mask is not None:
            if mask.shape[0] != y.shape[0]:
                mask = mask.repeat(y.shape[0] // mask.shape[0], 1)
            mask = mask.squeeze(1).squeeze(1)
            y = y.squeeze(1).masked_select(mask.unsqueeze(-1) != 0).view(1, -1, x.shape[-1])
            y_lens = mask.sum(dim=1).tolist()
            y_lens = [int(item) for item in y_lens]
        else:
            y_lens = [y.shape[2]] * y.shape[0]
            y = y.squeeze(1).view(1, -1, x.shape[-1])

        # define the first layer
        x = auto_grad_checkpoint(self.base_model.blocks[0], x, y, t0, y_lens, **kwargs)  # (N, T, D) #support grad checkpoint

        if c is not None:
            # update c
            for index in range(1, self.copy_blocks_num + 1):
                c, c_skip = auto_grad_checkpoint(self.controlnet[index - 1], x, y, t0, y_lens, c, **kwargs)
                x = auto_grad_checkpoint(self.base_model.blocks[index], x + c_skip, y, t0, y_lens, **kwargs)
        
            # update x
            for index in range(self.copy_blocks_num + 1, self.total_blocks_num):
                x = auto_grad_checkpoint(self.base_model.blocks[index], x, y, t0, y_lens, **kwargs)
        else:
            for index in range(1, self.total_blocks_num):
                x = auto_grad_checkpoint(self.base_model.blocks[index], x, y, t0, y_lens, **kwargs)

        x = self.final_layer(x, t)  # (N, T, patch_size ** 2 * out_channels)
        x = self.unpatchify(x)  # (N, out_channels, H, W)
        return x

# 3DEnhancer Backbone
class ControlPixArtMSMVHalfWithEncoder(ControlPixArtMSHalf):
    def __init__(self, base_model: PixArtMS, copy_blocks_num: int = 13) -> None:
        super().__init__(base_model=base_model, copy_blocks_num=copy_blocks_num)

        self.encoder = MVEncoder(
            double_z=False,
            resolution=512,
            in_channels=9,
            ch=64,
            ch_mult=[1, 2, 4, 4],
            num_res_blocks=1,
            dropout=0.0,
            attn_resolutions=[],
            out_ch=3,  # unused
            z_channels=self.hidden_size,
            attn_kwargs = {
                'n_heads': 8,
                'd_head': 64,
            },
            z_downsample_size=2,
        )

        self.noise_embedding = nn.Embedding(500, self.hidden_size)
        self.noise_embedding.weight.data.fill_(0)

        self.controlnet_t_block = nn.Sequential(
            nn.SiLU(),
            nn.Linear(self.hidden_size, 6 * self.hidden_size, bias=True)
        )

        self.attetion_token_num = self.base_size**2
    
    def encode(self, input_img, camera_pose, n_views):
        # fuse this two on 2nd dim
        # input_img: b3hw, camera_pose: b6hw (b%4==0)
        z_lq = torch.cat((input_img, camera_pose), dim=1)
        z_lq = self.encoder(z_lq, n_views)
        z_lq = z_lq.permute(0, 2, 3, 1).reshape(-1, self.attetion_token_num, self.hidden_size)

        return z_lq
    
    def forward(self, x, timestep, y, mask=None, data_info=None, input_img=None, camera_pose=None, c=None, noise_level=None, epipolar_constrains=None, cam_distances=None, n_views=None, **kwargs):
        """
        Forward pass of PixArt.
        x: (N, C, H, W) tensor of spatial inputs (images or latent representations of images)
        t: (N,) tensor of diffusion timesteps
        y: (N, 1, 120, C) tensor of class labels
        """

        c = self.encode(input_img, camera_pose, n_views).to(x.dtype) if c is None else c

        bs = x.shape[0]
        x = x.to(self.dtype)
        timestep = timestep.to(self.dtype)
        y = y.to(self.dtype)
        self.h, self.w = x.shape[-2]//self.patch_size, x.shape[-1]//self.patch_size
        pos_embed = torch.from_numpy(
            get_2d_sincos_pos_embed(
                self.pos_embed.shape[-1], (self.h, self.w), pe_interpolation=self.pe_interpolation,
                base_size=self.base_size
            )
        ).unsqueeze(0).to(x.device).to(self.dtype)

        x = self.x_embedder(x) + pos_embed  # (N, T, D), where T = H * W / patch_size ** 2
        t = self.t_embedder(timestep)  # (N, D)

        noise_level = self.noise_embedding(noise_level)
        controlnet_t = t + noise_level

        if self.micro_conditioning:
            c_size, ar = data_info['img_hw'].to(self.dtype), data_info['aspect_ratio'].to(self.dtype)
            csize = self.csize_embedder(c_size, bs)  # (N, D)
            ar = self.ar_embedder(ar, bs)  # (N, D)
            t = t + torch.cat([csize, ar], dim=1)

        t0 = self.t_block(t)
        controlnet_t0 = self.controlnet_t_block(controlnet_t)
        y = self.y_embedder(y, self.training)  # (N, D)

        if mask is not None:
            if mask.shape[0] != y.shape[0]:
                mask = mask.repeat(y.shape[0] // mask.shape[0], 1)
            mask = mask.squeeze(1).squeeze(1)
            y = y.squeeze(1).masked_select(mask.unsqueeze(-1) != 0).view(1, -1, x.shape[-1])
            y_lens = mask.sum(dim=1).tolist()
            y_lens = [int(item) for item in y_lens]
        else:
            y_lens = [y.shape[2]] * y.shape[0]
            y = y.squeeze(1).view(1, -1, x.shape[-1])

        x = auto_grad_checkpoint(self.base_model.blocks[0], x, y, t0, y_lens, None, None, epipolar_constrains, cam_distances, n_views, **kwargs)  # (N, T, D) #support grad checkpoint

        if c is not None:
            # update c
            for index in range(1, self.copy_blocks_num + 1):
                c, c_skip = auto_grad_checkpoint(self.controlnet[index - 1], x, y, controlnet_t0, y_lens, c, epipolar_constrains=epipolar_constrains, cam_distances=cam_distances, n_views=n_views, **kwargs)
                x = auto_grad_checkpoint(self.base_model.blocks[index], x + c_skip, y, t0, y_lens, None, None, epipolar_constrains, cam_distances, n_views, **kwargs)

            # update x
            for index in range(self.copy_blocks_num + 1, self.total_blocks_num):
                x = auto_grad_checkpoint(self.base_model.blocks[index], x, y, t0, y_lens, None, None, epipolar_constrains, cam_distances, n_views, **kwargs)
        else:
            for index in range(1, self.total_blocks_num):
                x = auto_grad_checkpoint(self.base_model.blocks[index], x, y, t0, y_lens, None, None, epipolar_constrains, cam_distances, n_views, **kwargs)

        x = self.final_layer(x, t)  # (N, T, patch_size ** 2 * out_channels)
        x = self.unpatchify(x)  # (N, out_channels, H, W)
        return x

    def forward_with_dpmsolver(self, x, t, y, data_info, c, noise_level, epipolar_constrains, cam_distances, n_views, **kwargs):
        model_out = self.forward(x, t, y, data_info=data_info, c=c, noise_level=noise_level, epipolar_constrains=epipolar_constrains, cam_distances=cam_distances, n_views=n_views, **kwargs)
        return model_out.chunk(2, dim=1)[0]