Spaces:
Running
on
Zero
Running
on
Zero
File size: 17,026 Bytes
4c35d22 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 |
import re
import torch
import torch.nn as nn
from copy import deepcopy
from torch import Tensor
from torch.nn import Module, Linear, init
from typing import Any, Mapping
from diffusion.model.nets import PixArtMSBlock, PixArtMS, PixArt, MVEncoder
from diffusion.model.nets.PixArt import get_2d_sincos_pos_embed
from diffusion.model.utils import auto_grad_checkpoint
# The implementation of ControlNet-Half architrecture
# https://github.com/lllyasviel/ControlNet/discussions/188
class ControlT2IDitBlockHalf(Module):
def __init__(self, base_block: PixArtMSBlock, block_index: 0, zero_init=True, base_size=None) -> None:
super().__init__()
self.copied_block = deepcopy(base_block)
self.block_index = block_index
for p in self.copied_block.parameters():
p.requires_grad_(True)
self.copied_block.load_state_dict(base_block.state_dict())
self.copied_block.train()
self.hidden_size = hidden_size = base_block.hidden_size
if self.block_index == 0:
self.before_proj = Linear(hidden_size, hidden_size)
# we still keep the before_proj as zero initialed
init.zeros_(self.before_proj.weight)
init.zeros_(self.before_proj.bias)
self.after_proj = Linear(hidden_size, hidden_size)
if zero_init:
init.zeros_(self.after_proj.weight)
init.zeros_(self.after_proj.bias)
def forward(self, x, y, t, mask=None, c=None, epipolar_constrains=None, cam_distances=None, n_views=None):
if self.block_index == 0:
# the first block
c = self.before_proj(c)
c = self.copied_block(x + c, y, t, mask, epipolar_constrains=epipolar_constrains, cam_distances=cam_distances, n_views=n_views)
c_skip = self.after_proj(c)
else:
# load from previous c and produce the c for skip connection
c = self.copied_block(c, y, t, mask, epipolar_constrains=epipolar_constrains, cam_distances=cam_distances, n_views=n_views)
c_skip = self.after_proj(c)
return c, c_skip
# The implementation of ControlPixArtHalf net
class ControlPixArtHalf(Module):
# only support single res model
def __init__(self, base_model: PixArt, copy_blocks_num: int = 13) -> None:
super().__init__()
self.base_model = base_model.eval()
self.controlnet = []
self.copy_blocks_num = copy_blocks_num
self.total_blocks_num = len(base_model.blocks)
for p in self.base_model.parameters():
p.requires_grad_(False)
# Copy first copy_blocks_num block
for i in range(copy_blocks_num):
self.controlnet.append(ControlT2IDitBlockHalf(base_model.blocks[i], i))
self.controlnet = nn.ModuleList(self.controlnet)
def __getattr__(self, name: str) -> Tensor or Module:
if name in [
'base_model',
'controlnet',
'encoder',
'controlnet_t_block',
'noise_embedding',
]:
return super().__getattr__(name)
else:
return getattr(self.base_model, name)
def forward_c(self, c):
self.h, self.w = c.shape[-2]//self.patch_size, c.shape[-1]//self.patch_size
pos_embed = torch.from_numpy(get_2d_sincos_pos_embed(self.pos_embed.shape[-1], (self.h, self.w), pe_interpolation=self.pe_interpolation, base_size=self.base_size)).unsqueeze(0).to(c.device).to(self.dtype)
return self.x_embedder(c) + pos_embed if c is not None else c
# def forward(self, x, t, c, **kwargs):
# return self.base_model(x, t, c=self.forward_c(c), **kwargs)
def forward(self, x, timestep, y, mask=None, data_info=None, c=None, **kwargs):
# modify the original PixArtMS forward function
if c is not None:
c = c.to(self.dtype)
c = self.forward_c(c)
"""
Forward pass of PixArt.
x: (N, C, H, W) tensor of spatial inputs (images or latent representations of images)
t: (N,) tensor of diffusion timesteps
y: (N, 1, 120, C) tensor of class labels
"""
x = x.to(self.dtype)
timestep = timestep.to(self.dtype)
y = y.to(self.dtype)
pos_embed = self.pos_embed.to(self.dtype)
self.h, self.w = x.shape[-2]//self.patch_size, x.shape[-1]//self.patch_size
x = self.x_embedder(x) + pos_embed # (N, T, D), where T = H * W / patch_size ** 2
t = self.t_embedder(timestep.to(x.dtype)) # (N, D)
t0 = self.t_block(t)
y = self.y_embedder(y, self.training) # (N, 1, L, D)
if mask is not None:
if mask.shape[0] != y.shape[0]:
mask = mask.repeat(y.shape[0] // mask.shape[0], 1)
mask = mask.squeeze(1).squeeze(1)
y = y.squeeze(1).masked_select(mask.unsqueeze(-1) != 0).view(1, -1, x.shape[-1])
y_lens = mask.sum(dim=1).tolist()
else:
y_lens = [y.shape[2]] * y.shape[0]
y = y.squeeze(1).view(1, -1, x.shape[-1])
# define the first layer
x = auto_grad_checkpoint(self.base_model.blocks[0], x, y, t0, y_lens, **kwargs) # (N, T, D) #support grad checkpoint
if c is not None:
# update c
for index in range(1, self.copy_blocks_num + 1):
c, c_skip = auto_grad_checkpoint(self.controlnet[index - 1], x, y, t0, y_lens, c, **kwargs)
x = auto_grad_checkpoint(self.base_model.blocks[index], x + c_skip, y, t0, y_lens, **kwargs)
# update x
for index in range(self.copy_blocks_num + 1, self.total_blocks_num):
x = auto_grad_checkpoint(self.base_model.blocks[index], x, y, t0, y_lens, **kwargs)
else:
for index in range(1, self.total_blocks_num):
x = auto_grad_checkpoint(self.base_model.blocks[index], x, y, t0, y_lens, **kwargs)
x = self.final_layer(x, t) # (N, T, patch_size ** 2 * out_channels)
x = self.unpatchify(x) # (N, out_channels, H, W)
return x
def forward_with_dpmsolver(self, x, t, y, data_info, c, **kwargs):
model_out = self.forward(x, t, y, data_info=data_info, c=c, **kwargs)
return model_out.chunk(2, dim=1)[0]
def forward_with_cfg(self, x, timestep, y, cfg_scale, data_info, c, **kwargs):
"""
Forward pass of PixArt, but also batches the unconditional forward pass for classifier-free guidance.
"""
# https://github.com/openai/glide-text2im/blob/main/notebooks/text2im.ipynb
half = x[: len(x) // 2]
combined = torch.cat([half, half], dim=0)
model_out = self.forward(combined, timestep, y, data_info=data_info, c=c)
eps, rest = model_out[:, :3], model_out[:, 3:]
cond_eps, uncond_eps = torch.split(eps, len(eps) // 2, dim=0)
half_eps = uncond_eps + cfg_scale * (cond_eps - uncond_eps)
eps = torch.cat([half_eps, half_eps], dim=0)
return torch.cat([eps, rest], dim=1)
def load_state_dict(self, state_dict: Mapping[str, Any], strict: bool = True):
if all((k.startswith(('base_model', 'controlnet', 'encoder', 'controlnet_t_block', 'noise_embedding'))) for k in state_dict.keys()):
return super().load_state_dict(state_dict, strict)
else:
new_key = {}
for k in state_dict.keys():
new_key[k] = re.sub(r"(blocks\.\d+)(.*)", r"\1.base_block\2", k)
for k, v in new_key.items():
if k != v:
print(f"replace {k} to {v}")
state_dict[v] = state_dict.pop(k)
return self.base_model.load_state_dict(state_dict, strict)
def unpatchify(self, x):
"""
x: (N, T, patch_size**2 * C)
imgs: (N, H, W, C)
"""
c = self.out_channels
p = self.x_embedder.patch_size[0]
assert self.h * self.w == x.shape[1]
x = x.reshape(shape=(x.shape[0], self.h, self.w, p, p, c))
x = torch.einsum('nhwpqc->nchpwq', x)
imgs = x.reshape(shape=(x.shape[0], c, self.h * p, self.w * p))
return imgs
@property
def dtype(self):
return next(self.parameters()).dtype
# The implementation for PixArtMS_Half + 1024 resolution
class ControlPixArtMSHalf(ControlPixArtHalf):
# support multi-scale res model (multi-scale model can also be applied to single reso training & inference)
def __init__(self, base_model: PixArtMS, copy_blocks_num: int = 13) -> None:
super().__init__(base_model=base_model, copy_blocks_num=copy_blocks_num)
def forward(self, x, timestep, y, mask=None, data_info=None, c=None, need_forward_c=True, **kwargs):
# modify the original PixArtMS forward function
"""
Forward pass of PixArt.
x: (N, C, H, W) tensor of spatial inputs (images or latent representations of images)
t: (N,) tensor of diffusion timesteps
y: (N, 1, 120, C) tensor of class labels
"""
if c is not None and need_forward_c:
c = c.to(self.dtype)
c = self.forward_c(c)
bs = x.shape[0]
x = x.to(self.dtype)
timestep = timestep.to(self.dtype)
y = y.to(self.dtype)
self.h, self.w = x.shape[-2]//self.patch_size, x.shape[-1]//self.patch_size
pos_embed = torch.from_numpy(
get_2d_sincos_pos_embed(
self.pos_embed.shape[-1], (self.h, self.w), pe_interpolation=self.pe_interpolation,
base_size=self.base_size
)
).unsqueeze(0).to(x.device).to(self.dtype)
x = self.x_embedder(x) + pos_embed # (N, T, D), where T = H * W / patch_size ** 2
t = self.t_embedder(timestep) # (N, D)
if self.micro_conditioning:
c_size, ar = data_info['img_hw'].to(self.dtype), data_info['aspect_ratio'].to(self.dtype)
csize = self.csize_embedder(c_size, bs) # (N, D)
ar = self.ar_embedder(ar, bs) # (N, D)
t = t + torch.cat([csize, ar], dim=1)
t0 = self.t_block(t)
y = self.y_embedder(y, self.training) # (N, D)
if mask is not None:
if mask.shape[0] != y.shape[0]:
mask = mask.repeat(y.shape[0] // mask.shape[0], 1)
mask = mask.squeeze(1).squeeze(1)
y = y.squeeze(1).masked_select(mask.unsqueeze(-1) != 0).view(1, -1, x.shape[-1])
y_lens = mask.sum(dim=1).tolist()
y_lens = [int(item) for item in y_lens]
else:
y_lens = [y.shape[2]] * y.shape[0]
y = y.squeeze(1).view(1, -1, x.shape[-1])
# define the first layer
x = auto_grad_checkpoint(self.base_model.blocks[0], x, y, t0, y_lens, **kwargs) # (N, T, D) #support grad checkpoint
if c is not None:
# update c
for index in range(1, self.copy_blocks_num + 1):
c, c_skip = auto_grad_checkpoint(self.controlnet[index - 1], x, y, t0, y_lens, c, **kwargs)
x = auto_grad_checkpoint(self.base_model.blocks[index], x + c_skip, y, t0, y_lens, **kwargs)
# update x
for index in range(self.copy_blocks_num + 1, self.total_blocks_num):
x = auto_grad_checkpoint(self.base_model.blocks[index], x, y, t0, y_lens, **kwargs)
else:
for index in range(1, self.total_blocks_num):
x = auto_grad_checkpoint(self.base_model.blocks[index], x, y, t0, y_lens, **kwargs)
x = self.final_layer(x, t) # (N, T, patch_size ** 2 * out_channels)
x = self.unpatchify(x) # (N, out_channels, H, W)
return x
# 3DEnhancer Backbone
class ControlPixArtMSMVHalfWithEncoder(ControlPixArtMSHalf):
def __init__(self, base_model: PixArtMS, copy_blocks_num: int = 13) -> None:
super().__init__(base_model=base_model, copy_blocks_num=copy_blocks_num)
self.encoder = MVEncoder(
double_z=False,
resolution=512,
in_channels=9,
ch=64,
ch_mult=[1, 2, 4, 4],
num_res_blocks=1,
dropout=0.0,
attn_resolutions=[],
out_ch=3, # unused
z_channels=self.hidden_size,
attn_kwargs = {
'n_heads': 8,
'd_head': 64,
},
z_downsample_size=2,
)
self.noise_embedding = nn.Embedding(500, self.hidden_size)
self.noise_embedding.weight.data.fill_(0)
self.controlnet_t_block = nn.Sequential(
nn.SiLU(),
nn.Linear(self.hidden_size, 6 * self.hidden_size, bias=True)
)
self.attetion_token_num = self.base_size**2
def encode(self, input_img, camera_pose, n_views):
# fuse this two on 2nd dim
# input_img: b3hw, camera_pose: b6hw (b%4==0)
z_lq = torch.cat((input_img, camera_pose), dim=1)
z_lq = self.encoder(z_lq, n_views)
z_lq = z_lq.permute(0, 2, 3, 1).reshape(-1, self.attetion_token_num, self.hidden_size)
return z_lq
def forward(self, x, timestep, y, mask=None, data_info=None, input_img=None, camera_pose=None, c=None, noise_level=None, epipolar_constrains=None, cam_distances=None, n_views=None, **kwargs):
"""
Forward pass of PixArt.
x: (N, C, H, W) tensor of spatial inputs (images or latent representations of images)
t: (N,) tensor of diffusion timesteps
y: (N, 1, 120, C) tensor of class labels
"""
c = self.encode(input_img, camera_pose, n_views).to(x.dtype) if c is None else c
bs = x.shape[0]
x = x.to(self.dtype)
timestep = timestep.to(self.dtype)
y = y.to(self.dtype)
self.h, self.w = x.shape[-2]//self.patch_size, x.shape[-1]//self.patch_size
pos_embed = torch.from_numpy(
get_2d_sincos_pos_embed(
self.pos_embed.shape[-1], (self.h, self.w), pe_interpolation=self.pe_interpolation,
base_size=self.base_size
)
).unsqueeze(0).to(x.device).to(self.dtype)
x = self.x_embedder(x) + pos_embed # (N, T, D), where T = H * W / patch_size ** 2
t = self.t_embedder(timestep) # (N, D)
noise_level = self.noise_embedding(noise_level)
controlnet_t = t + noise_level
if self.micro_conditioning:
c_size, ar = data_info['img_hw'].to(self.dtype), data_info['aspect_ratio'].to(self.dtype)
csize = self.csize_embedder(c_size, bs) # (N, D)
ar = self.ar_embedder(ar, bs) # (N, D)
t = t + torch.cat([csize, ar], dim=1)
t0 = self.t_block(t)
controlnet_t0 = self.controlnet_t_block(controlnet_t)
y = self.y_embedder(y, self.training) # (N, D)
if mask is not None:
if mask.shape[0] != y.shape[0]:
mask = mask.repeat(y.shape[0] // mask.shape[0], 1)
mask = mask.squeeze(1).squeeze(1)
y = y.squeeze(1).masked_select(mask.unsqueeze(-1) != 0).view(1, -1, x.shape[-1])
y_lens = mask.sum(dim=1).tolist()
y_lens = [int(item) for item in y_lens]
else:
y_lens = [y.shape[2]] * y.shape[0]
y = y.squeeze(1).view(1, -1, x.shape[-1])
x = auto_grad_checkpoint(self.base_model.blocks[0], x, y, t0, y_lens, None, None, epipolar_constrains, cam_distances, n_views, **kwargs) # (N, T, D) #support grad checkpoint
if c is not None:
# update c
for index in range(1, self.copy_blocks_num + 1):
c, c_skip = auto_grad_checkpoint(self.controlnet[index - 1], x, y, controlnet_t0, y_lens, c, epipolar_constrains=epipolar_constrains, cam_distances=cam_distances, n_views=n_views, **kwargs)
x = auto_grad_checkpoint(self.base_model.blocks[index], x + c_skip, y, t0, y_lens, None, None, epipolar_constrains, cam_distances, n_views, **kwargs)
# update x
for index in range(self.copy_blocks_num + 1, self.total_blocks_num):
x = auto_grad_checkpoint(self.base_model.blocks[index], x, y, t0, y_lens, None, None, epipolar_constrains, cam_distances, n_views, **kwargs)
else:
for index in range(1, self.total_blocks_num):
x = auto_grad_checkpoint(self.base_model.blocks[index], x, y, t0, y_lens, None, None, epipolar_constrains, cam_distances, n_views, **kwargs)
x = self.final_layer(x, t) # (N, T, patch_size ** 2 * out_channels)
x = self.unpatchify(x) # (N, out_channels, H, W)
return x
def forward_with_dpmsolver(self, x, t, y, data_info, c, noise_level, epipolar_constrains, cam_distances, n_views, **kwargs):
model_out = self.forward(x, t, y, data_info=data_info, c=c, noise_level=noise_level, epipolar_constrains=epipolar_constrains, cam_distances=cam_distances, n_views=n_views, **kwargs)
return model_out.chunk(2, dim=1)[0] |