Files changed (1) hide show
  1. agent.py +0 -228
agent.py DELETED
@@ -1,228 +0,0 @@
1
- import os
2
- from dotenv import load_dotenv
3
- from langgraph.graph import START, StateGraph, MessagesState
4
- from langgraph.prebuilt import tools_condition
5
- from langgraph.prebuilt import ToolNode
6
- from langchain_community.tools.tavily_search import TavilySearchResults # 已经导入了
7
- from langchain_community.document_loaders import WikipediaLoader
8
- from langchain_community.document_loaders import ArxivLoader
9
- from langchain_core.messages import SystemMessage, HumanMessage
10
- from langchain_core.tools import tool
11
- # from langchain_openai import ChatOpenAI
12
- from langchain_deepseek import ChatDeepSeek
13
-
14
-
15
- # load_dotenv() # 假设你在 app.py 或其他地方加载了 .env
16
- # Ensure API keys are set
17
- DEEPSEEK_API_KEY = os.getenv("DEEPSEEK_API_KEY")
18
- TAVILY_API_KEY = os.getenv("TAVILY_API_KEY") # 需要在 Space Secrets 中添加 TAVILY_API_KEY
19
-
20
- if not DEEPSEEK_API_KEY:
21
- raise ValueError("DEEPSEEK_API_KEY not found in environment variables.")
22
- if not TAVILY_API_KEY:
23
- # Tavily is critical for most questions, raise error if not set
24
- raise ValueError("TAVILY_API_KEY not found in environment variables. Please add it to your Space Secrets.")
25
-
26
-
27
-
28
- # Keep Wikipedia and Arxiv, but the general search will be more used
29
- @tool
30
- def wiki_search(query: str) -> str:
31
- "Using Wikipedia, search for a query and return up to 2 relevant results."
32
- try:
33
- search_docs = WikipediaLoader(query=query, load_max_docs=2, doc_content_chars_max=2000).load() # Limit content length
34
- if not search_docs:
35
- return "Wikipedia search found no relevant pages."
36
- formatted_search_docs = "\n\n---\n\n".join(
37
- [
38
- f'<Document source="Wikipedia - {doc.metadata.get("source", "")}" page="{doc.metadata.get("page", "")}">\n{doc.page_content}\n</Document>'
39
- for doc in search_docs
40
- ])
41
- return formatted_search_docs # Return string directly
42
- except Exception as e:
43
- return f"An error occurred during Wikipedia search: {e}"
44
-
45
-
46
-
47
- # *** ADD TAVILY WEB SEARCH TOOL ***
48
- @tool
49
- def web_search(query: str) -> str:
50
- """Search the web for a query using Tavily and return relevant snippets."""
51
- try:
52
- tavily = TavilySearchResults(max_results=5) # Get up to 5 results
53
- results = tavily.invoke(query)
54
- if not results:
55
- return "Web search found no relevant results."
56
- # Format Tavily results
57
- formatted_results = "\n\n---\n\n".join([
58
- f'<SearchResult source="{r["source"]}">\nTitle: {r["title"]}\nContent: {r["content"]}\n</SearchResult>'
59
- for r in results
60
- ])
61
- return formatted_results # Return string directly
62
- except Exception as e:
63
- return f"An error occurred during web search: {e}"
64
-
65
- @tool
66
- def duckduckgo_search(query: str) -> str:
67
- """Search the web for a query using DuckDuckGo and return relevant snippets."""
68
- try:
69
- search_tool = DuckDuckGoSearchRun()
70
- results = search_tool.invoke(query)
71
- if not results or results.strip() == "":
72
- return "DuckDuckGo search found no relevant results."
73
- return f"<SearchResult source=\"DuckDuckGo\">{results}</SearchResult>"
74
- except Exception as e:
75
- return f"An error occurred during DuckDuckGo search: {e}"
76
-
77
-
78
- @tool
79
- def arithmetic(expression: str) -> str:
80
- """执行数学计算并返回结果。支持基本的算术运算如加减乘除、幂运算等。"""
81
- try:
82
- # 使用Python的eval函数安全地计算表达式
83
- # 限制只能使用基本算术运算,不允许导入模块或执行其他危险操作
84
- allowed_names = {"__builtins__": {}}
85
- allowed_symbols = {}
86
- result = eval(expression, allowed_names, allowed_symbols)
87
- return str(result)
88
- except Exception as e:
89
- return f"计算表达式时出错: {e}"
90
-
91
- # load the system prompt from the file
92
- # Ensure this file exists and has the content from Step 2
93
- with open("system_prompt.txt", "r", encoding="utf-8") as f:
94
- system_prompt = f.read()
95
- sys_msg = SystemMessage(content=system_prompt)
96
-
97
- tools = [
98
- wiki_search,
99
- duckduckgo_search,
100
- web_search,
101
- arithmetic,
102
- ]
103
-
104
-
105
- def build_graph():
106
- llm = ChatDeepSeek(
107
- model="deepseek-chat",
108
- temperature=0, # Keep low for factual answers
109
- max_tokens=None,
110
- timeout=None,
111
- max_retries=2,
112
- api_key=DEEPSEEK_API_KEY,
113
- base_url="https://api.deepseek.com"
114
- )
115
- llm_with_tools = llm.bind_tools(tools)
116
-
117
-
118
- def assistant(state: MessagesState):
119
- """Assistant node: invoke LLM with tools."""
120
- print("---Calling Assistant---") # Added print for debugging
121
-
122
- # 确保系统消息在消息列表的开头
123
- messages = state["messages"]
124
- if not any(isinstance(m, SystemMessage) for m in messages):
125
- messages = [SystemMessage(content=system_prompt)] + messages
126
-
127
- result = llm_with_tools.invoke(messages)
128
- # print(f"---Assistant Response: {result}") # Added print for debugging
129
- return {"messages": [result]}
130
-
131
- builder = StateGraph(MessagesState)
132
- builder.add_node("assistant", assistant)
133
- builder.add_node("tools", ToolNode(tools))
134
-
135
- builder.add_edge(START, "assistant")
136
-
137
- # The tools_condition checks if the last message from "assistant" is a tool call.
138
- # If yes, it transitions to "tools".
139
- # If no, the graph implicitly ends. This is how the agent stops.
140
- builder.add_conditional_edges(
141
- "assistant",
142
- tools_condition,
143
- # If tool_condition is false (no tool calls detected), the default is None,
144
- # which implicitly ends the graph execution for that path.
145
- # We don't need to explicitly define other paths here for a simple graph.
146
- )
147
-
148
- # After a tool is executed, the result is added to the state, and the control
149
- # goes back to the assistant to process the tool result and decide the next step.
150
- builder.add_edge("tools", "assistant")
151
-
152
- # You can optionally increase the recursion limit if your graph is expected to be complex,
153
- # but it's better to fix the LLM's logic via the prompt first.
154
- # return builder.compile(recursion_limit=50) # Example of increasing limit
155
- return builder.compile()
156
-
157
-
158
- if __name__ == "__main__":
159
- # Example Usage (for local testing)
160
- # To run this part, make sure you have DEEPSEEK_API_KEY and TAVILY_API_KEY
161
- # set in your environment or a .env file loaded beforehand.
162
- # If running locally, you'd typically use `load_dotenv()` here or in app.py
163
-
164
- # Test questions covering different tool needs
165
- questions_for_testing = [
166
- "How many studio albums were published by Mercedes Sosa between 2000 and 2009 (included)?", # Web Search
167
- "In the video https://www.youtube.com/watch?v=L1vXCYZAYYM, what is the highest number of bird species seen?", # Requires video analysis (will likely fail with current tools)
168
- ".rewsna eht sa \"tfel\" drow eht fo etisoppo eht etirw ,ecnetnes siht dnatsrednu uoy fI", # Text manipulation (no tool needed)
169
- "What is 12345 * 6789?", # Calculator
170
- "Who nominated the only Featured Article on English Wikipedia about a dinosaur that was promoted in November 2023?", # Web Search/Wikipedia
171
- "What country had the least number of athletes at the 1928 Summer Olympics?", # Web Search
172
- "Review the chess position provided in the image. It is black's turn. Provide the correct next move from this position: [Describe the position or mention image input which is not supported]", # Requires image analysis (will likely fail)
173
- # Add more questions from your evaluation set to test
174
- ]
175
-
176
-
177
- graph = build_graph()
178
-
179
- # Optional: Draw graph
180
- # try:
181
- # png_data = graph.get_graph().draw_mermaid_png()
182
- # with open("graph.png", "wb") as f:
183
- # f.write(png_data)
184
- # print("Graph visualization saved to graph.png")
185
- # except Exception as e:
186
- # print(f"Could not draw graph: {e}")
187
-
188
-
189
- print("\n--- Running single question tests ---")
190
- for i, question in enumerate(questions_for_testing):
191
- print(f"\n--- Testing Question {i+1}: {question}")
192
- try:
193
- # LangGraph returns the final state after execution completes or hits recursion limit
194
- final_state = graph.invoke({"messages": [SystemMessage(content=system_prompt), HumanMessage(content=question)]})
195
-
196
- # 在这里添加您的处理答案代码
197
- def process_answer(answer):
198
- """处理最终答案,去除可能的解释性文本"""
199
- # 如果答案包含"FINAL ANSWER:",提取实际答案部分
200
- if "FINAL ANSWER:" in answer.upper():
201
- import re
202
- match = re.search(r'(?i)FINAL ANSWER:\s*(.*)', answer)
203
- if match:
204
- return match.group(1).strip()
205
-
206
- # 如果答案较长且包含多个句子,尝试提取最后一句作为答案
207
- if len(answer.split()) > 15 and "." in answer:
208
- sentences = answer.split(".")
209
- # 过滤掉空字符串
210
- sentences = [s.strip() for s in sentences if s.strip()]
211
- if sentences:
212
- return sentences[-1].strip()
213
-
214
- return answer.strip()
215
-
216
- # 在提交答案前应用处理
217
- final_answer = final_state["messages"][-1].content
218
- processed_answer = process_answer(final_answer)
219
- # 打印处理后的答案
220
- print(f"\n--- Processed Answer: {processed_answer}")
221
-
222
- print("\n--- Final State Messages ---")
223
- for m in final_state["messages"]:
224
- m.pretty_print()
225
- print("-" * 30)
226
- except Exception as e:
227
- print(f"--- Error running graph for this question: {e}")
228
- print("-" * 30)