File size: 10,259 Bytes
7ccc423
 
 
 
 
 
 
 
 
172285b
7ccc423
 
 
 
 
 
 
 
 
172285b
7ccc423
 
172285b
 
 
 
ae534d1
172285b
ae534d1
 
172285b
 
ae534d1
 
7ccc423
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dd93214
 
7ccc423
 
 
 
 
 
 
dd93214
7ccc423
 
 
 
 
dd93214
 
 
 
 
 
 
 
7ccc423
 
 
dd93214
7ccc423
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
daa45ed
7ccc423
daa45ed
 
 
 
 
 
 
 
 
 
7ccc423
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
75c09e2
7ccc423
 
75c09e2
7ccc423
 
75c09e2
7ccc423
 
 
 
 
 
 
 
 
 
 
 
 
 
daa45ed
 
7ccc423
75c09e2
7ccc423
 
 
 
 
 
 
daa45ed
7ccc423
 
 
 
 
 
 
 
 
 
 
172285b
 
 
7ccc423
172285b
 
 
7ccc423
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
172285b
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
import os
import random
from datetime import datetime

import gradio as gr
import numpy as np
import torch
from diffusers import AutoencoderKL, DDIMScheduler
from einops import repeat
from huggingface_hub import hf_hub_download, snapshot_download
from omegaconf import OmegaConf
from PIL import Image
from torchvision import transforms
from transformers import CLIPVisionModelWithProjection

from src.models.pose_guider import PoseGuider
from src.models.unet_2d_condition import UNet2DConditionModel
from src.models.unet_3d import UNet3DConditionModel
from src.pipelines.pipeline_pose2vid_long import Pose2VideoPipeline
from src.utils.download_models import prepare_base_model, prepare_image_encoder
from src.utils.util import get_fps, read_frames, save_videos_grid

# Partial download
prepare_base_model()
prepare_image_encoder()

snapshot_download(
    repo_id="stabilityai/sd-vae-ft-mse", local_dir="./pretrained_weights/sd-vae-ft-mse"
)
snapshot_download(
    repo_id="patrolli/AnimateAnyone",
    local_dir="./pretrained_weights",
)


class AnimateController:
    def __init__(
        self,
        config_path="./configs/prompts/animation.yaml",
        weight_dtype=torch.float16,
    ):
        # Read pretrained weights path from config
        self.config = OmegaConf.load(config_path)
        self.pipeline = None
        self.weight_dtype = weight_dtype

    def animate(
        self,
        ref_image,
        pose_video_path,
        width=512,
        height=768,
        length=24,
        num_inference_steps=25,
        cfg=3.5,
        seed=123,
    ):
        generator = torch.manual_seed(seed)
        if isinstance(ref_image, np.ndarray):
            ref_image = Image.fromarray(ref_image)
        if self.pipeline is None:
            vae = AutoencoderKL.from_pretrained(
                self.config.pretrained_vae_path,
            ).to("cuda", dtype=self.weight_dtype)

            reference_unet = UNet2DConditionModel.from_pretrained(
                self.config.pretrained_base_model_path,
                subfolder="unet",
            ).to(dtype=self.weight_dtype, device="cuda")

            inference_config_path = self.config.inference_config
            infer_config = OmegaConf.load(inference_config_path)
            denoising_unet = UNet3DConditionModel.from_pretrained_2d(
                self.config.pretrained_base_model_path,
                self.config.motion_module_path,
                subfolder="unet",
                unet_additional_kwargs=infer_config.unet_additional_kwargs,
            ).to(dtype=self.weight_dtype, device="cuda")

            pose_guider = PoseGuider(320, block_out_channels=(16, 32, 96, 256)).to(
                dtype=self.weight_dtype, device="cuda"
            )

            image_enc = CLIPVisionModelWithProjection.from_pretrained(
                self.config.image_encoder_path
            ).to(dtype=self.weight_dtype, device="cuda")
            sched_kwargs = OmegaConf.to_container(infer_config.noise_scheduler_kwargs)
            scheduler = DDIMScheduler(**sched_kwargs)

            # load pretrained weights
            denoising_unet.load_state_dict(
                torch.load(self.config.denoising_unet_path, map_location="cpu"),
                strict=False,
            )
            reference_unet.load_state_dict(
                torch.load(self.config.reference_unet_path, map_location="cpu"),
            )
            pose_guider.load_state_dict(
                torch.load(self.config.pose_guider_path, map_location="cpu"),
            )

            pipe = Pose2VideoPipeline(
                vae=vae,
                image_encoder=image_enc,
                reference_unet=reference_unet,
                denoising_unet=denoising_unet,
                pose_guider=pose_guider,
                scheduler=scheduler,
            )
            pipe = pipe.to("cuda", dtype=self.weight_dtype)
            self.pipeline = pipe

        pose_images = read_frames(pose_video_path)
        src_fps = get_fps(pose_video_path)

        pose_list = []
        total_length = min(length, len(pose_images))
        for pose_image_pil in pose_images[:total_length]:
            pose_list.append(pose_image_pil)

        video = self.pipeline(
            ref_image,
            pose_list,
            width=width,
            height=height,
            video_length=total_length,
            num_inference_steps=num_inference_steps,
            guidance_scale=cfg,
            generator=generator,
        ).videos

        new_h, new_w = video.shape[-2:]
        pose_transform = transforms.Compose(
            [transforms.Resize((new_h, new_w)), transforms.ToTensor()]
        )
        pose_tensor_list = []
        for pose_image_pil in pose_images[:total_length]:
            pose_tensor_list.append(pose_transform(pose_image_pil))

        ref_image_tensor = pose_transform(ref_image)  # (c, h, w)
        ref_image_tensor = ref_image_tensor.unsqueeze(1).unsqueeze(0)  # (1, c, 1, h, w)
        ref_image_tensor = repeat(
            ref_image_tensor, "b c f h w -> b c (repeat f) h w", repeat=total_length
        )
        pose_tensor = torch.stack(pose_tensor_list, dim=0)  # (f, c, h, w)
        pose_tensor = pose_tensor.transpose(0, 1)
        pose_tensor = pose_tensor.unsqueeze(0)
        video = torch.cat([ref_image_tensor, pose_tensor, video], dim=0)

        save_dir = f"./output/gradio"
        if not os.path.exists(save_dir):
            os.makedirs(save_dir, exist_ok=True)
        date_str = datetime.now().strftime("%Y%m%d")
        time_str = datetime.now().strftime("%H%M")
        out_path = os.path.join(save_dir, f"{date_str}T{time_str}.mp4")
        save_videos_grid(
            video,
            out_path,
            n_rows=3,
            fps=src_fps,
        )

        torch.cuda.empty_cache()

        return out_path


controller = AnimateController()


def ui():
    with gr.Blocks() as demo:
        gr.HTML(
            """
            <h1 style="color:#dc5b1c;text-align:center">
                Moore-AnimateAnyone Gradio Demo 
            </h1>
            <div style="text-align:center">
            <div style="display: inline-block; text-align: left;">
            <p> This is a quick preview demo of Moore-AnimateAnyone. We appreciate the assistance provided by the HuggingFace team in setting up this demo. </p> 

            <p> If you like this project,  please consider giving a star on <a herf="https://github.com/MooreThreads/Moore-AnimateAnyone"> our GitHub repo </a> 🤗. </p>
            </div>
            </div>
            """
        )
        animation = gr.Video(
            format="mp4",
            label="Animation Results",
            height=448,
            autoplay=True,
        )

        with gr.Row():
            reference_image = gr.Image(label="Reference Image")
            motion_sequence = gr.Video(
                format="mp4", label="Motion Sequence", height=512
            )

            with gr.Column():
                width_slider = gr.Slider(
                    label="Width", minimum=448, maximum=768, value=448, step=64
                )
                height_slider = gr.Slider(
                    label="Height", minimum=512, maximum=960, value=512, step=64
                )
                length_slider = gr.Slider(
                    label="Video Length", minimum=24, maximum=128, value=24, step=24
                )
                with gr.Row():
                    seed_textbox = gr.Textbox(label="Seed", value=-1)
                    seed_button = gr.Button(
                        value="\U0001F3B2", elem_classes="toolbutton"
                    )
                    seed_button.click(
                        fn=lambda: gr.Textbox.update(value=random.randint(1, 1e8)),
                        inputs=[],
                        outputs=[seed_textbox],
                    )
                with gr.Row():
                    sampling_steps = gr.Slider(
                        label="Sampling steps",
                        value=15,
                        info="default: 15",
                        step=5,
                        maximum=20,
                        minimum=10,
                    )
                    guidance_scale = gr.Slider(
                        label="Guidance scale",
                        value=3.5,
                        info="default: 3.5",
                        step=0.5,
                        maximum=6.5,
                        minimum=2.0,
                    )
                submit = gr.Button("Animate")

        def read_video(video):
            return video

        def read_image(image):
            return Image.fromarray(image)

        # when user uploads a new video
        motion_sequence.upload(
            read_video, motion_sequence, motion_sequence, queue=False
        )
        # when `first_frame` is updated
        reference_image.upload(
            read_image, reference_image, reference_image, queue=False
        )
        # when the `submit` button is clicked
        submit.click(
            controller.animate,
            [
                reference_image,
                motion_sequence,
                width_slider,
                height_slider,
                length_slider,
                sampling_steps,
                guidance_scale,
                seed_textbox,
            ],
            animation,
        )

        # Examples
        gr.Markdown("## Examples")
        gr.Examples(
            examples=[
                [
                    "./configs/inference/ref_images/anyone-5.png",
                    "./configs/inference/pose_videos/anyone-video-2_kps.mp4",
                ],
                [
                    "./configs/inference/ref_images/anyone-10.png",
                    "./configs/inference/pose_videos/anyone-video-1_kps.mp4",
                ],
                [
                    "./configs/inference/ref_images/anyone-2.png",
                    "./configs/inference/pose_videos/anyone-video-5_kps.mp4",
                ],
            ],
            inputs=[reference_image, motion_sequence],
            outputs=animation,
        )

    return demo


demo = ui()
demo.queue(max_size=10)
demo.launch(share=True, show_api=False)