File size: 6,896 Bytes
6c85792
c8cb9bb
 
 
 
 
 
 
 
6c85792
2e0fb71
6c85792
 
 
a5ca5a6
a18a2d9
a5ca5a6
 
 
 
 
 
a18a2d9
a5ca5a6
 
 
bba2454
a5ca5a6
 
 
 
 
 
 
774d798
 
a5ca5a6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8d01019
6c85792
 
21fc719
6c85792
6d2e8db
 
 
 
 
 
 
 
 
 
 
 
 
bba2454
ea1e63c
2e0fb71
6717f64
2e0fb71
020dc5b
a0a768e
 
 
6717f64
 
 
a0a768e
6717f64
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ea1e63c
6717f64
 
 
 
a0a768e
6717f64
a0a768e
38af3c8
a0a768e
6717f64
a0a768e
6717f64
 
 
 
 
 
 
2e0fb71
6717f64
ea1e63c
a5ca5a6
 
 
 
 
46cde7f
31e7adc
383d7cb
6717f64
 
 
 
 
383d7cb
6717f64
 
 
 
 
0840b84
2e0fb71
6c85792
 
d635546
 
 
6c85792
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cd73099
 
6c85792
 
 
 
 
 
ba31c3d
6c85792
5564ca3
bb4525d
 
 
e2718c0
5f65d94
32d9c0d
d635546
2e0fb71
9251ce3
fc4f76a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
import gradio as gr
import PIL
from PIL import Image
import numpy as np
import os
import uuid
import torch
from torch import autocast
import cv2
from io import BytesIO

from matplotlib import pyplot as plt
from torchvision import transforms

import io
import logging
import multiprocessing
import random
import time
import imghdr
from pathlib import Path
from typing import Union
from loguru import logger

from lama_cleaner.model_manager import ModelManager
from lama_cleaner.schema import Config

try:
    torch._C._jit_override_can_fuse_on_cpu(False)
    torch._C._jit_override_can_fuse_on_gpu(False)
    torch._C._jit_set_texpr_fuser_enabled(False)
    torch._C._jit_set_nvfuser_enabled(False)
except:
    pass


from lama_cleaner.helper import (
    load_img,
    numpy_to_bytes,
    resize_max_size,
)

NUM_THREADS = str(multiprocessing.cpu_count())

# fix libomp problem on windows https://github.com/Sanster/lama-cleaner/issues/56
os.environ["KMP_DUPLICATE_LIB_OK"] = "True"

os.environ["OMP_NUM_THREADS"] = NUM_THREADS
os.environ["OPENBLAS_NUM_THREADS"] = NUM_THREADS
os.environ["MKL_NUM_THREADS"] = NUM_THREADS
os.environ["VECLIB_MAXIMUM_THREADS"] = NUM_THREADS
os.environ["NUMEXPR_NUM_THREADS"] = NUM_THREADS
if os.environ.get("CACHE_DIR"):
    os.environ["TORCH_HOME"] = os.environ["CACHE_DIR"]

HF_TOKEN_SD = os.environ.get('HF_TOKEN_SD')

device = "cuda" if torch.cuda.is_available() else "cpu"
print(f'device = {device}')

def get_image_ext(img_bytes):
    w = imghdr.what("", img_bytes)
    if w is None:
        w = "jpeg"
    return w
    
def read_content(file_path):
    """read the content of target file
    """
    with open(file_path, 'rb') as f:
        content = f.read()
    return content
    
model = None

def model_process(image, mask):
    global model
    
    if mask.shape[0] == image.shape[1] and mask.shape[1] == image.shape[0] and mask.shape[0] != mask.shape[1]:
        # rotate image
        image = np.transpose(image[::-1, ...][:, ::-1], axes=(1, 0, 2))[::-1, ...]
        
    original_shape = image.shape
    interpolation = cv2.INTER_CUBIC
    
    size_limit = 1080 #1080 # "Original"
    if size_limit == "Original":
        size_limit = max(image.shape)
    else:
        size_limit = int(size_limit)

    config = Config(
        ldm_steps=25,
        ldm_sampler='plms',
        zits_wireframe=True,
        hd_strategy='Original',
        hd_strategy_crop_margin=196,
        hd_strategy_crop_trigger_size=1280,
        hd_strategy_resize_limit=2048,
        prompt='',
        use_croper=False,
        croper_x=0,
        croper_y=0,
        croper_height=512,
        croper_width=512,
        sd_mask_blur=5,
        sd_strength=0.75,
        sd_steps=50,
        sd_guidance_scale=7.5,
        sd_sampler='ddim',
        sd_seed=42,
        cv2_flag='INPAINT_NS',
        cv2_radius=5,
    )
    
    if config.sd_seed == -1:
        config.sd_seed = random.randint(1, 999999999)

    print(f"Origin image shape_0_: {original_shape} / {size_limit}")
    image = resize_max_size(image, size_limit=size_limit, interpolation=interpolation)
    print(f"Resized image shape_1_: {image.shape}")
    
    print(f"mask image shape_0_: {mask.shape} / {type(mask)}")
    mask = resize_max_size(mask, size_limit=size_limit, interpolation=interpolation)
    print(f"mask image shape_1_: {mask.shape} / {type(mask)}")

    if model is None:
        return None
        
    res_np_img = model(image, mask, config)
    torch.cuda.empty_cache()
  
    image = Image.open(io.BytesIO(numpy_to_bytes(res_np_img, 'png')))
    return  image # image
    
model = ModelManager(
        name='lama',
        device=device,
    )

image_type = 'pil' # filepath' 
def predict(input):
    if image_type == 'filepath':
        # input: {'image': '/tmp/tmp8mn9xw93.png', 'mask': '/tmp/tmpn5ars4te.png'}
        origin_image_bytes = read_content(input["image"])
        print(f'origin_image_bytes = ', type(origin_image_bytes), len(origin_image_bytes))    
        image, _ = load_img(origin_image_bytes) 
        mask, _ = load_img(read_content(input["mask"]), gray=True)       
    elif image_type == 'pil':
        # input: {'image': pil, 'mask': pil}
        image_pil = input['image']
        mask_pil = input['mask']
        image = np.array(image_pil)
        mask = np.array(mask_pil.convert("L"))
    output = model_process(image, mask)
    return output

css = '''
.container {max-width: 98%;margin: auto;padding-top: 1.5rem}
#image_upload{min-height:768px}
#image_upload [data-testid="image"], #image_upload [data-testid="image"] > div{min-height: 768px}
#mask_radio .gr-form{background:transparent; border: none}
#word_mask{margin-top: .75em !important}
#word_mask textarea:disabled{opacity: 0.3}
.footer {margin-bottom: 45px;margin-top: 35px;text-align: center;border-bottom: 1px solid #e5e5e5}
.footer>p {font-size: .8rem; display: inline-block; padding: 0 10px;transform: translateY(10px);background: white}
.dark .footer {border-color: #303030}
.dark .footer>p {background: #0b0f19}
.acknowledgments h4{margin: 1.25em 0 .25em 0;font-weight: bold;font-size: 115%}
#image_upload .touch-none{display: flex}
@keyframes spin {
    from {
        transform: rotate(0deg);
    }
    to {
        transform: rotate(360deg);
    }
}
#share-btn-container {
    display: flex; padding-left: 0.5rem !important; padding-right: 0.5rem !important; background-color: #000000; justify-content: center; align-items: center; border-radius: 9999px !important; width: 13rem;
}
#share-btn {
    all: initial; color: #ffffff;font-weight: 600; cursor:pointer; font-family: 'IBM Plex Sans', sans-serif; margin-left: 0.5rem !important; padding-top: 0.25rem !important; padding-bottom: 0.25rem !important;
}
#share-btn * {
    all: unset;
}
#share-btn-container div:nth-child(-n+2){
    width: auto !important;
    min-height: 0px !important;
}
#share-btn-container .wrap {
    display: none !important;
}
'''

image_blocks = gr.Blocks(css=css)
with image_blocks as demo:
    with gr.Group():
        with gr.Box():
            with gr.Row():
                with gr.Column():
                    image = gr.Image(source='upload', elem_id="image_upload",tool='sketch', type=f'{image_type}', label="Upload").style(mobile_collapse=False, width=768)
                    with gr.Row(elem_id="prompt-container").style(mobile_collapse=False, equal_height=True):
                        btn_in = gr.Button("Erase").style(
                            margin=True,
                            rounded=(True, True, True, True),
                            full_width=True,
                        )                
                
                with gr.Column():
                    image_out = gr.Image(label="Output", elem_id="image_output", visible=True)# .style(width=768)
            btn_in.click(fn=predict, inputs=[image], outputs=[image_out])
            
image_blocks.launch()