Spaces:
Running
Running
yizhangliu
commited on
Commit
·
383d7cb
1
Parent(s):
e995f9f
Update app.py
Browse files
app.py
CHANGED
@@ -120,7 +120,7 @@ def load_img_1_(nparr, gray: bool = False):
|
|
120 |
return np_img, alpha_channel
|
121 |
|
122 |
model = None
|
123 |
-
def
|
124 |
global model
|
125 |
|
126 |
# input = request.files
|
@@ -225,7 +225,7 @@ def model_process(input):
|
|
225 |
return ext
|
226 |
'''
|
227 |
|
228 |
-
def
|
229 |
global model
|
230 |
# {'image': '/tmp/tmp8mn9xw93.png', 'mask': '/tmp/tmpn5ars4te.png'}
|
231 |
# input = request.files
|
@@ -237,6 +237,9 @@ def model_process_2(input): #image, mask):
|
|
237 |
original_shape = image.shape
|
238 |
interpolation = cv2.INTER_CUBIC
|
239 |
|
|
|
|
|
|
|
240 |
# form = request.form
|
241 |
# print(f'size_limit_1_ = ', form["sizeLimit"], type(input["image"]))
|
242 |
size_limit = "Original" #: Union[int, str] = form.get("sizeLimit", "1080")
|
@@ -285,26 +288,33 @@ def model_process_2(input): #image, mask):
|
|
285 |
mask = resize_max_size(mask, size_limit=size_limit, interpolation=interpolation)
|
286 |
print(f"mask image shape: {mask.shape} / {type(mask)} / {mask[250][250]} / {alpha_channel}")
|
287 |
|
|
|
|
|
|
|
288 |
start = time.time()
|
289 |
res_np_img = model(image, mask, config)
|
290 |
-
logger.info(f"process time: {(time.time() - start) * 1000}ms")
|
291 |
-
print(f"process
|
292 |
|
293 |
torch.cuda.empty_cache()
|
294 |
|
295 |
if alpha_channel is not None:
|
296 |
-
print(f"
|
297 |
if alpha_channel.shape[:2] != res_np_img.shape[:2]:
|
|
|
298 |
alpha_channel = cv2.resize(
|
299 |
alpha_channel, dsize=(res_np_img.shape[1], res_np_img.shape[0])
|
300 |
)
|
|
|
301 |
res_np_img = np.concatenate(
|
302 |
(res_np_img, alpha_channel[:, :, np.newaxis]), axis=-1
|
303 |
)
|
304 |
-
|
|
|
|
|
305 |
image = Image.fromarray(res_np_img)
|
306 |
image.save(f'./result_image.png')
|
307 |
-
return image
|
308 |
'''
|
309 |
ext = get_image_ext(origin_image_bytes)
|
310 |
|
@@ -346,6 +356,7 @@ def read_content(file_path):
|
|
346 |
|
347 |
return content
|
348 |
|
|
|
349 |
def predict(input):
|
350 |
print(f'liuyz_0_', input)
|
351 |
'''
|
@@ -362,12 +373,15 @@ def predict(input):
|
|
362 |
print(f'liuyz_3_', image.convert("RGB").resize((512, 512)).shape)
|
363 |
# mask = dict["mask"] # .convert("RGB") #.resize((512, 512))
|
364 |
'''
|
365 |
-
|
|
|
|
|
|
|
366 |
|
367 |
# output = mask #output.images[0]
|
368 |
# output = pipe(prompt = prompt, image=init_image, mask_image=mask,guidance_scale=7.5)
|
369 |
# output = input["mask"]
|
370 |
-
output = None
|
371 |
return output #, gr.update(visible=True), gr.update(visible=True), gr.update(visible=True)
|
372 |
|
373 |
print(f'liuyz_500_here_')
|
@@ -460,7 +474,7 @@ with image_blocks as demo:
|
|
460 |
with gr.Box():
|
461 |
with gr.Row():
|
462 |
with gr.Column():
|
463 |
-
image = gr.Image(source='upload', tool='sketch',type='
|
464 |
with gr.Row(elem_id="prompt-container").style(mobile_collapse=False, equal_height=True):
|
465 |
# prompt = gr.Textbox(placeholder = 'Your prompt (what you want in place of what is erased)', show_label=False, elem_id="input-text")
|
466 |
btn = gr.Button("Done!").style(
|
|
|
120 |
return np_img, alpha_channel
|
121 |
|
122 |
model = None
|
123 |
+
def model_process_pil(input):
|
124 |
global model
|
125 |
|
126 |
# input = request.files
|
|
|
225 |
return ext
|
226 |
'''
|
227 |
|
228 |
+
def model_process_filepath(input): #image, mask):
|
229 |
global model
|
230 |
# {'image': '/tmp/tmp8mn9xw93.png', 'mask': '/tmp/tmpn5ars4te.png'}
|
231 |
# input = request.files
|
|
|
237 |
original_shape = image.shape
|
238 |
interpolation = cv2.INTER_CUBIC
|
239 |
|
240 |
+
image_pil = Image.fromarray(image)
|
241 |
+
# mask_pil = Image.fromarray(mask).convert("L")
|
242 |
+
|
243 |
# form = request.form
|
244 |
# print(f'size_limit_1_ = ', form["sizeLimit"], type(input["image"]))
|
245 |
size_limit = "Original" #: Union[int, str] = form.get("sizeLimit", "1080")
|
|
|
288 |
mask = resize_max_size(mask, size_limit=size_limit, interpolation=interpolation)
|
289 |
print(f"mask image shape: {mask.shape} / {type(mask)} / {mask[250][250]} / {alpha_channel}")
|
290 |
|
291 |
+
if model is None:
|
292 |
+
return None
|
293 |
+
|
294 |
start = time.time()
|
295 |
res_np_img = model(image, mask, config)
|
296 |
+
logger.info(f"process time: {(time.time() - start) * 1000}ms, {res_np_img.shape}")
|
297 |
+
print(f"process time_1_: {(time.time() - start) * 1000}ms, {alpha_channel.shape}, {res_np_img.shape} / {res_np_img[250][250]} / {res_np_img.dtype}")
|
298 |
|
299 |
torch.cuda.empty_cache()
|
300 |
|
301 |
if alpha_channel is not None:
|
302 |
+
print(f"liuyz_here_10_: {alpha_channel.shape} / {alpha_channel.dtype} / {res_np_img.dtype}")
|
303 |
if alpha_channel.shape[:2] != res_np_img.shape[:2]:
|
304 |
+
print(f"liuyz_here_20_: {alpha_channel.shape} / {res_np_img.shape}")
|
305 |
alpha_channel = cv2.resize(
|
306 |
alpha_channel, dsize=(res_np_img.shape[1], res_np_img.shape[0])
|
307 |
)
|
308 |
+
print(f"liuyz_here_30_: {alpha_channel.shape} / {res_np_img.shape} / {alpha_channel.dtype} / {res_np_img.dtype}")
|
309 |
res_np_img = np.concatenate(
|
310 |
(res_np_img, alpha_channel[:, :, np.newaxis]), axis=-1
|
311 |
)
|
312 |
+
print(f"liuyz_here_40_: {alpha_channel.shape} / {res_np_img.shape} / {alpha_channel.dtype} / {res_np_img.dtype}")
|
313 |
+
print(f"process time_2_: {(time.time() - start) * 1000}ms, {alpha_channel.shape}, {res_np_img.shape} / {res_np_img[250][250]} / {res_np_img.dtype}")
|
314 |
+
|
315 |
image = Image.fromarray(res_np_img)
|
316 |
image.save(f'./result_image.png')
|
317 |
+
return image_pil # image
|
318 |
'''
|
319 |
ext = get_image_ext(origin_image_bytes)
|
320 |
|
|
|
356 |
|
357 |
return content
|
358 |
|
359 |
+
image_type = 'filepath' #'pil'
|
360 |
def predict(input):
|
361 |
print(f'liuyz_0_', input)
|
362 |
'''
|
|
|
373 |
print(f'liuyz_3_', image.convert("RGB").resize((512, 512)).shape)
|
374 |
# mask = dict["mask"] # .convert("RGB") #.resize((512, 512))
|
375 |
'''
|
376 |
+
if image_type == 'filepath':
|
377 |
+
output = model_process_filepath(input) # dict["image"], dict["mask"])
|
378 |
+
elif image_type == 'pil':
|
379 |
+
output = model_process_pil(input)
|
380 |
|
381 |
# output = mask #output.images[0]
|
382 |
# output = pipe(prompt = prompt, image=init_image, mask_image=mask,guidance_scale=7.5)
|
383 |
# output = input["mask"]
|
384 |
+
# output = None
|
385 |
return output #, gr.update(visible=True), gr.update(visible=True), gr.update(visible=True)
|
386 |
|
387 |
print(f'liuyz_500_here_')
|
|
|
474 |
with gr.Box():
|
475 |
with gr.Row():
|
476 |
with gr.Column():
|
477 |
+
image = gr.Image(source='upload', tool='sketch',type=f'{image_type}', label="Upload").style(height=512)
|
478 |
with gr.Row(elem_id="prompt-container").style(mobile_collapse=False, equal_height=True):
|
479 |
# prompt = gr.Textbox(placeholder = 'Your prompt (what you want in place of what is erased)', show_label=False, elem_id="input-text")
|
480 |
btn = gr.Button("Done!").style(
|