File size: 3,469 Bytes
854fcbb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7ca041b
 
854fcbb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7ca041b
854fcbb
 
 
 
 
0dd9926
854fcbb
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
# https://huggingface.co/spaces/yilmazmusa_ml/abstract_summarizer

# Here are the imports
import warnings
import pdfplumber
import torch
from transformers import pipeline, AutoProcessor, AutoModel
import numpy as np
import gradio as gr
from scipy.io.wavfile import write as write_wav
warnings.filterwarnings("ignore")


# Here is the code
def extract_abstract(uploaded_file):
    with pdfplumber.open(pdf_bytes) as pdf:
        abstract = ""
        # Iterate through each page
        for page in pdf.pages:
            text = page.extract_text(x_tolerance = 1, y_tolerance = 1) # these parameters are set 1 in order to get spaces between words and lines
            # Search for the "Abstract" keyword
            if "abstract" in text.lower():
                # Found the "Abstract" keyword
                start_index = text.lower().find("abstract") # find the "abstract" title as starter index
                end_index = text.lower().find("introduction") # find the "introduction" title as end index
                abstract = text[start_index:end_index]
                break
    print(abstract)
    return abstract

def process_summary(summary):
    # Split the summary by the first period
    summary = summary[0]["summary_text"]
    sentences = summary.split('.', 1)
    if len(sentences) > 0:
        # Retrieve the first part before the period
        processed_summary = sentences[0].strip() + "."
        # Replace "-" with an empty string
        processed_summary = processed_summary.replace("-", "")
        return processed_summary

# Function for summarization and audio conversion
def summarize_and_convert_to_audio(pdf_file):
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    print(device)
    
    # Move models and related tensors to CUDA device if available
    processor = AutoProcessor.from_pretrained("suno/bark")
    model = AutoModel.from_pretrained("suno/bark").to(device)
    
    # Extract abstract
    abstract_text = extract_abstract(pdf_file)

    if not abstract_text:
        return "No 'abstract' section found in the uploaded PDF. Please upload a different PDF."
    
    # Summarize the abstract
    summarization_pipeline = pipeline(task='summarization', model='knkarthick/MEETING_SUMMARY', min_length=15, max_length=30)
    summarized_text = summarization_pipeline(abstract_text)
    one_sentence_summary = process_summary(summarized_text)

    print(one_sentence_summary)
    
    # Text-to-audio conversion
    inputs = processor(
        text=[one_sentence_summary],
        return_tensors="pt",
    )
    inputs = inputs.to(device)
    
    speech_values = model.generate(**inputs, do_sample=True)
    sampling_rate = model.generation_config.sample_rate
    
    # Convert speech values to audio data
    audio_data = speech_values.cpu().numpy().squeeze()

    # Convert audio data to bytes
    with BytesIO() as buffer:
        write_wav(buffer, sampling_rate, audio_data.astype(np.float32))
        audio_bytes = buffer.getvalue()

    return audio_bytes, sampling_rate  # Return audio as bytes with sampling rate


# Create a Gradio interface
iface = gr.Interface(
    fn=summarize_and_convert_to_audio,
    inputs=gr.UploadButton(label="Upload PDF", type="filepath", file_types=["pdf"]),  # Set to accept only PDF files
    outputs=gr.Audio(label="Audio"),
    title="PDF Abstract Summarizer",
    description="Upload a PDF with an abstract to generate a summarized audio."
)

iface.launch()