Spaces:
Sleeping
Sleeping
Commit
·
854fcbb
1
Parent(s):
92162ef
Add application file
Browse files- app.py +94 -0
- requirements.txt +9 -0
app.py
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# https://huggingface.co/spaces/yilmazmusa_ml/abstract_summarizer
|
2 |
+
|
3 |
+
# Here are the imports
|
4 |
+
import warnings
|
5 |
+
import pdfplumber
|
6 |
+
import torch
|
7 |
+
from transformers import pipeline, AutoProcessor, AutoModel
|
8 |
+
import numpy as np
|
9 |
+
import gradio as gr
|
10 |
+
from io import BytesIO
|
11 |
+
from scipy.io.wavfile import write as write_wav
|
12 |
+
warnings.filterwarnings("ignore")
|
13 |
+
|
14 |
+
|
15 |
+
# Here is the code
|
16 |
+
def extract_abstract(uploaded_file):
|
17 |
+
pdf_bytes = BytesIO(uploaded_file)
|
18 |
+
with pdfplumber.open(pdf_bytes) as pdf:
|
19 |
+
abstract = ""
|
20 |
+
# Iterate through each page
|
21 |
+
for page in pdf.pages:
|
22 |
+
text = page.extract_text(x_tolerance = 1, y_tolerance = 1) # these parameters are set 1 in order to get spaces between words and lines
|
23 |
+
# Search for the "Abstract" keyword
|
24 |
+
if "abstract" in text.lower():
|
25 |
+
# Found the "Abstract" keyword
|
26 |
+
start_index = text.lower().find("abstract") # find the "abstract" title as starter index
|
27 |
+
end_index = text.lower().find("introduction") # find the "introduction" title as end index
|
28 |
+
abstract = text[start_index:end_index]
|
29 |
+
break
|
30 |
+
print(abstract)
|
31 |
+
return abstract
|
32 |
+
|
33 |
+
def process_summary(summary):
|
34 |
+
# Split the summary by the first period
|
35 |
+
summary = summary[0]["summary_text"]
|
36 |
+
sentences = summary.split('.', 1)
|
37 |
+
if len(sentences) > 0:
|
38 |
+
# Retrieve the first part before the period
|
39 |
+
processed_summary = sentences[0].strip() + "."
|
40 |
+
# Replace "-" with an empty string
|
41 |
+
processed_summary = processed_summary.replace("-", "")
|
42 |
+
return processed_summary
|
43 |
+
|
44 |
+
# Function for summarization and audio conversion
|
45 |
+
def summarize_and_convert_to_audio(pdf_file):
|
46 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
47 |
+
print(device)
|
48 |
+
|
49 |
+
# Move models and related tensors to CUDA device if available
|
50 |
+
processor = AutoProcessor.from_pretrained("suno/bark")
|
51 |
+
model = AutoModel.from_pretrained("suno/bark").to(device)
|
52 |
+
|
53 |
+
# Extract abstract
|
54 |
+
abstract_text = extract_abstract(pdf_file)
|
55 |
+
|
56 |
+
if not abstract_text:
|
57 |
+
return "No 'abstract' section found in the uploaded PDF. Please upload a different PDF."
|
58 |
+
|
59 |
+
# Summarize the abstract
|
60 |
+
summarization_pipeline = pipeline(task='summarization', model='knkarthick/MEETING_SUMMARY', min_length=15, max_length=30)
|
61 |
+
summarized_text = summarization_pipeline(abstract_text)
|
62 |
+
one_sentence_summary = process_summary(summarized_text)
|
63 |
+
|
64 |
+
# Text-to-audio conversion
|
65 |
+
inputs = processor(
|
66 |
+
text=[one_sentence_summary],
|
67 |
+
return_tensors="pt",
|
68 |
+
)
|
69 |
+
inputs = inputs.to(device)
|
70 |
+
|
71 |
+
speech_values = model.generate(**inputs, do_sample=True)
|
72 |
+
sampling_rate = model.generation_config.sample_rate
|
73 |
+
|
74 |
+
# Convert speech values to audio data
|
75 |
+
audio_data = speech_values.cpu().numpy().squeeze()
|
76 |
+
|
77 |
+
# Convert audio data to bytes
|
78 |
+
with BytesIO() as buffer:
|
79 |
+
write_wav(buffer, sampling_rate, audio_data.astype(np.float32))
|
80 |
+
audio_bytes = buffer.getvalue()
|
81 |
+
|
82 |
+
return audio_bytes # Return audio as bytes
|
83 |
+
|
84 |
+
|
85 |
+
# Create a Gradio interface
|
86 |
+
iface = gr.Interface(
|
87 |
+
fn=summarize_and_convert_to_audio,
|
88 |
+
inputs=gr.UploadButton(label="Upload PDF", type="bytes", file_types=["pdf"]), # Set to accept only PDF files
|
89 |
+
outputs=gr.Audio(label="Audio"),
|
90 |
+
title="PDF Abstract Summarizer",
|
91 |
+
description="Upload a PDF with an abstract to generate a summarized audio."
|
92 |
+
)
|
93 |
+
|
94 |
+
iface.launch()
|
requirements.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
accelerate==0.24.1
|
2 |
+
gradio==3.50.2
|
3 |
+
huggingface-hub==0.17.3
|
4 |
+
numpy==1.24.1
|
5 |
+
pdfplumber==0.10.3
|
6 |
+
torch==2.2.0
|
7 |
+
torchaudio==2.2.0
|
8 |
+
torchvision==0.17.0
|
9 |
+
transformers==4.35.0
|