File size: 5,000 Bytes
751936e d27a756 751936e d27a756 751936e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 |
"""
special_tokens = ["[MASK]", "[gMASK]", "[sMASK]", "<unused_0>", "<sop>", "<eop>", "<ENC>", "<dBLOCK>"]
啥? 啥? bos eos
[MASK] for short blank filling - 150000
[sMASK] for sentence filling -
[gMASK] for left-to-right generation. - 150001
text.replace("\t", f"<|tab|>")
text.replace(" " * i, f"<|blank_{length}|>")
text.replace("\n", "<n>")
"bos_token": "<sop>", startofpiece
"eop_token": "<eop>",
"eos_token": "</s>",
## 确认
130005 = <eop>
## 源码:
- https://huggingface.co/THUDM/chatglm-6b/blob/main/tokenization_chatglm.py#L32
"""
import os
from transformers import AutoTokenizer
os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
# tokenizer = AutoTokenizer.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True)
tokenizer = AutoTokenizer.from_pretrained("chatglm_6b/", trust_remote_code=True)
def encode_text(text):
"""
能够编码
"""
tokens = tokenizer.tokenize(text)
token_id = tokenizer.encode(text=text, add_special_tokens=False)
decoded_text = tokenizer.decode(token_id)
print("tokens: ", tokens, ";\tid: ", token_id, ";\ttext: ", decoded_text)
def test_space():
# " " 编码后是空的
for text in [" ", "\t", "你是谁", "你是\n谁", "你是 谁", "你是 谁", "'[Round 0]\n问:你是谁\n答:我是一个名为 ChatGLM-6B 的人工智能助手,是基于清华大学 KEG 实验室和智谱 AI 公司于 2023 年共同训练的语言模型开发的。我的任务是针对用户的问题和要求提供适当的答复和支持。\n[Round 1]\n问:你会干什么\n答:"]:
encode_text(text)
def test_case():
for text in ["Good morning", "good morning", "good morning", "goog morningabc"]:
encode_text(text)
def export():
with open("chatglm.vocab", "w", encoding="utf-8") as f_out:
vocab_size = len(tokenizer.sp_tokenizer.text_tokenizer.proto.pieces)
for i in range(vocab_size):
f_out.write(tokenizer.sp_tokenizer.text_tokenizer.proto.pieces[i].piece + "\n")
# export()
def test_tokens():
tokens = [43435]
tokens = [ 53, 6945, 5, 8, 42, 4, 64286, 12, 74874,
4, 67342, 12, 74874, 130328, 130247, 130233, 130227, 35,
65806, 68241, 75890, 14132, 5388, 340, 11, 21, 222,
6, 76693, 66877, 63852, 6, 66430, 68747, 102501, 63823,
4, 52, 6945, 5, 9, 42, 4, 64286, 12,
65450, 83400, 64213, 66846, 4, 67342, 12, 130001, 130004,
74747, 83400, 66115, 90478, 70597, 63826, 68076, 6, 63873,
68684, 64113, 120922, 73129, 63823, 65056, 63829, 63948, 64124,
79727, 64447, 12, 4, 4, 9, 7, 5, 64716,
93067, 95119, 64560, 12, 66524, 63827, 70682, 63944, 89160,
63826, 71304, 6, 79553, 67155, 63826, 68668, 63843, 91351,
96846, 63823, 4, 4, 10, 7, 5, 95472, 74107,
66625, 64285, 12, 64442, 67201, 69609, 63824, 81548, 63824,
70870, 63826, 66800, 6, 94824, 63959, 65195, 65515, 63824,
64392, 69584, 63824, 81198, 63914, 63835, 63823, 4, 4,
13, 7, 5, 66544, 69656, 12, 66533, 63891, 63948,
66544, 69726, 6, 63906, 86089, 63824, 88419, 63824, 69765,
63853, 64369, 102753, 64736, 63823, 4, 4, 16, 7,
5, 65073, 63827, 72151, 64020, 67491, 66469, 63853, 68168,
12, 65289, 95128, 63826, 68819, 6, 118679, 66115, 64174,
66625, 63823, 4, 4, 15, 7, 5, 86790, 12,
70666, 89266, 63878, 66544, 69656, 6, 67623, 73129, 63823,
4, 4, 21, 7, 71210, 79856, 63912, 63831, 66625,
69204, 64659, 12, 66312, 63922, 64984, 67427, 63824, 63959,
65419, 63853, 64384, 63835, 63823, 4, 4, 63976, 106490,
65921, 64542, 73129, 6, 63852, 80917, 65207, 64678, 63853,
66625, 64427, 6, 89385, 64124, 79727, 64447, 63823, 130005]
# print(tokenizer.decode(tokens))
start_idx = 0 # chatglm里的token_id是从0开始的
# start_idx = 20000 # 默认词典,前20000是图片
for i, token in enumerate(tokens):
# print(i, token, tokenizer.decode([token - start_idx]))
# print(tokenizer.sp_tokenizer.text_tokenizer.proto.pieces[token - start_idx].piece, end=" ")
print(i, token, tokenizer.sp_tokenizer.text_tokenizer.proto.pieces[token - start_idx].piece)
test_tokens()
encode_text("good job d的 算法")
# tokenizer.sp_tokenizer.text_tokenizer.convert_token_to_id(x) + tokenizer.sp_tokenizer.num_image_tokens
# test_case()
# test_space()
# s
|